贸易/设备名称:qER 法规编号:21 CFR 892.2080 法规名称:放射学计算机辅助分类和通知软件 监管类别:II 类 产品代码:QAS 日期:2020 年 6 月 11 日 收到日期:2020 年 6 月 11 日 亲爱的 Pooja Rao: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中注明的用途而言),或与已根据《联邦食品药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请(PMA)的批准。因此,您可以营销该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等效性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有要求,包括但不限于:注册和列名(21 CFR 第 807 部分);标签(21 CFR 第
贸易/设备名称:qER-Quant 法规编号:21 CFR 892.2050 法规名称:医学图像管理和处理系统 监管类别:II 类 产品代码:QIH 日期:2021 年 6 月 30 日 收到日期:2021 年 7 月 1 日 亲爱的 Pooja Rao: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中规定的使用指征而言),或与根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请 (PMA) 的批准。因此,您可以根据该法案的一般控制规定销售该设备。虽然这封信将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到额外控制。现有的影响您设备的重大法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等同性认定并不意味着 FDA 已确定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有要求,包括但不限于:注册和列名(21 CFR 第 807 部分);标签(21 CFR 第
NTPC 以外的 CGS ( 1) 1256.71 155.44 425.97 581.41 3.39 1.24 4.63 NTPC (SR) Ramagundam St.I&II 727.16 58.59 300.82 359.41 4.14 0.81 4.94
背景:血管内治疗(EVT)被建议作为治疗颅内动脉瘤的优越方式。然而,患有EVT的动脉瘤性蛛网膜下腔出血(ASAH)患者的功能结果较差仍然存在。因此,迫切需要研究风险因素并在此类患者的亚型中开发关键的决策模型。方法:我们从正在进行的注册表队列研究Prosah-MPC中提取了目标变量,该研究是在中国多个中心进行的。我们将这些患者随机分配给培训和验证队列,比为7:3。单变量和多元逻辑回归以找到潜在因素,然后开发了具有优化变量的九个机器学习模型和堆栈集合模型。通过多个指标评估了这些模型的性能,包括接收器操作特征曲线(AUC-ROC)下的区域。我们进一步使用Shapley添加说明(SHAP)方法,基于最佳模型的特征可视化分布。结果:总共招募了226名经历EVT的较差ASAH的合格患者,而89(39.4%)的12个月结果较差。年龄(调整或[AOR],1.08; 95%CI:1.03–1.13; P = 0.002),蛛网膜下腔出血体积(AOR,1.02; 95%CI:1.00-1.05; P = 0.033; P = 0.033; P = 0.033),神经外神经社会级联盟,Wornurosurgical Societies等级(wfns)(W ffns)(w ffns)(w ffns)(w ffns)(2.03)(aor c)(2.03); 1.05–3.93; p = 0.035)和狩猎级别(AOR,2.36; 95%CI:1.13–4.93; p = 0.022)被确定为不良结果的独立风险因素。NCT05738083。然后,开发的预测模型表明,LightGBM算法在验证队列中的AUC-ROC值为0.842,而Shap结果表明年龄是影响功能结果的最重要的风险因素。结论:LightGBM模型在促进患有不良后果风险的贫困级ASAH患者的风险分层方面具有巨大的潜力,从而增强了临床决策过程。试用注册:Prosah-MPC。2022年11月16日注册 - 回顾性注册,https:// clinical trials.gov/study/nct05738083。关键词:颅内动脉瘤,蛛网膜下腔出血,血管内手术,机器学习,预后
