源对碳(C)分配是由水槽强度驱动的,即水槽器官进口C的能力,在组织生长和生物量生产率中起着核心作用。但是,在树木中尚未彻底表征水槽强度的分子驱动因素。生长素作为主要的植物植物激素,可调节源组织中光剂量的动员,并提高碳水化合物向水槽器官(包括根)的易位。在这项研究中,我们使用了“生长素刺激的碳汇”方法来了解杨树中长距离源 - 键C分配中涉及的分子过程。杨树碎屑被叶面喷涂,上面喷涂了极地生长素传输调节剂,包括生长素增强剂(AE)(即IBA和IAA)和生长素抑制剂(AI)(即NPA),然后全面使用生物量评估,均经材料来对叶片,茎和根组织进行全面的分析,均质和均质概况,均经均经材料,c isotope and coptope and coptope and coptoper nertem nertops和coptoper nertops nekotom and et necotom nerting nekoling,et negoling noursem。生长素调节剂改变了根部干重和分支模式,AE增加了光合固定的C从叶片到根组织。转录组分析在AE条件下确定了根组织中高度表达的基因,其中包括编码多半乳糖醛酸酶和β-淀粉酶的转录本,这些转录物可能会增加水槽的大小和活性。代谢分析表明,总代谢的变化,包括甲醇的相对丰度含量改变,在AE和AI条件下,根组织中柠檬酸盐水平的相反趋势。总而言之,我们假设一个模型表明,流动糖醇,淀粉代谢衍生的糖和TCA-Cycle中间体可以作为杨树中的源– sink C关系,作为水槽强度的关键分子驱动因素。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月22日发布。 https://doi.org/10.1101/2025.02.17.638464 doi:biorxiv Preprint
和3 0区域进行了六聚体,以生成两个较短的合成启动子,Syn3-10b-1(5 0:GTTAACTTCA)和Syn3-10B-2(3 0:GGGCCTGTGG)。将这些启动子的活性与植物中的Syn3进行了比较。syn3和syn3-10b-1在瞬态的农业固定的烟草本nipiana benthamiana叶片中特异性诱导了3天。在稳定的转基因杨树中,Syn3作为本构启动子呈现,但在叶片中的活性最高。SYN3-10B-1在水功率条件下对绿色组织的诱导比模拟对照更强。因此,包含5 0序列的Syn3序列的合成启动子赋予了组织特异性的细胞和水的诱导性转基因杨树,而3 0序列则没有。因此,我们在杨树工程工具包中添加了两个新的合成启动子:Syn3-10B-1,一种绿色组织特异性和水应力诱导的启动子,以及Syn3,Syn3,Syn3,绿色组织预定的构成构成启动子。
摘要:金字塔形、直立或直立生长的植物形态的特点是枝条和叶子的分枝角度较窄。直立叶子和枝条习性的优势可能是光线更有效地穿透较低的冠层。已经报道了包括桃树在内的各种树种的金字塔基因型。旁系同源水稻直系同源物 TILLER ANGLE CONTROL 1 (TAC1) 被认为是负责直立生长的基因。然而,对于任何金字塔树种基因型,尚未真正证明 TAC1 基因的敲除突变会导致植物金字塔形生长。通过计算机分析,我们在 P. trichocarpa 基因组中发现了一个假定的水稻 TAC1 直系同源物(Potri.014G102600,“TAC-14”)及其旁系同源物(Potri.002G175300,“TAC-2”)。通过应用转基因 CRISPR/Cas9 方法成功敲除 P. × canescens 克隆 INRA 717-1B4 中的两个假定的 PcTAC1 直系同源物。在温室中对突变体进行了为期三年的分子分析和表型分析。我们的结果表明,“TAC-14”的纯合敲除足以诱导 P. × canescens 中的金字塔形植物生长。如果在短轮伐期林(SRC)上种植多达两倍的金字塔树种,那么可以提高木材产量,无需任何育种,只需增加默认田地面积上的树木数量即可。
抽象的森林碳动态建模用于估算匈牙利的短旋转碳库存生物能源种植园,对于更好地理解黑色蝗虫(Robinia pseudoacacia)和Poplar(Populus sp。)大气中的二氧化碳固执。研究目的是估算潜在的碳库存,并描述地面上方和下方的短旋转型生物能源种植园的碳分布。各种来源用于获取用于开发森林碳动态模型的参数化数据。CO2FIX建模v.3.2在数据分析中用于估计生物质,土壤,收获的木料和生物能源室中的碳库存。建模已经存在了45年。在这项研究中,模拟期结束时黑色蝗虫和杨树的总碳库存分别为64.13和131.08 mgc.ha -1。黑色蝗虫和杨树上方和地下的平均碳分配分别为0.76、19.76、1.80和21.67 mgc.ha -1。总而言之,在短旋转旋转式生物能源种植园中,杨树的表现优于黑色蝗虫。地面碳分配下方的分配要比地面上方高得多。因此,应通过环保土壤管理在地下分配下进行更多关注。
摘要 美国科学家成功利用新基因工程(新基因组技术,NGT)将杨树的幼树期从 7 至 10 年大大缩短至仅几个月,从而实现提前开花。结果表明,只需进行少量基因改造,无需添加新基因,即可改变杨树的根本物种特异性特征。与一年生耕地植物类似,理论上,这使得可以在短时间内杂交和选择 NGT 杨树,从而大大加快其释放和销售。然而,如果杨树被释放或逃逸到环境中,这种特性可能会导致不受控制的蔓延,对受保护的杨树物种的保护产生巨大的后续影响。例如,在环境中蔓延的 NGT 杨树可能会取代濒危物种红色名录上的黑杨树。此外,复杂的生态系统可能会受到影响或破坏,因为杨树与大量物种相互作用,尤其是昆虫,包括受保护的蝴蝶和甲虫物种。
封面插图以幼发拉底河或沙漠杨树为特色,通常被称为“沙漠的监护人”。几个世纪以来,这些树木一直依靠一个深厚的相互联系的根系,该系统通过共同的繁荣来促进集体增长。同样,HNB致力于建立一个坚固而相互联系的基础,该基础不仅是为了银行,还为我们服务的社区而言。通过增强我们的核心价值观并促进伙伴关系,我们旨在创建一个蓬勃发展的生态系统,以支持可持续发展,增强利益相关者的福祉,并确保对后代的长期成功。
摘要:此摘要是我们目前正在进行的“创新森林计划”的研究项目的概述。该项目的目的是在种植后的第一年,尤其是机械除草剂而无需使用除草剂而自动化杨树种植园的传统手动任务。杨树林被认为是半结构化的环境,在该环境中,密集的冠层防止使用GPS信号和激光传感器,而不是局部使用激光传感器。在本文中,我们关注的主要功能之一:自主导航,其中包括检测和定位树木在如此复杂的环境中安全移动。自主导航需要精确且可靠的映射和本地化解决方案。在这种情况下,同时定位和映射(SLAM)是非常适合的解决方案。构造的地图可以可靠地用于计划移动机器人的语义路径,以便特定地对待每棵树。在凉亭和机器人操作系统(ROS)上进行的模拟证明,机器人可以在杨树林中自动导航。
期间:2020至2023 I.在2020 - 2023年期间的政策和法律框架中,杨树和柳树种植仍受到因素的持续影响,导致一定程度下降。在这个框架中,比利时是一个与农业和林业有关的主题的区域化国家。因此,有重要的杨树和柳树架的两个地区有些报告是不同的:瓦洛尼亚和法兰德斯。该国家报告纳入了比利时两个地区委员会的意见。以下人员对比利时杨树委员会(按字母顺序)为这份报告做出了贡献:玛丽·鲍赫(Marie Baucher),沃特·布尔扬(Wout Boerjan),扬·库斯特(Jan Coussement),威姆·德·克雷克斯(Jan Coussement),威姆·德·克雷克(Wim de Clercq),贝诺伊特·乔伊斯(Benoit Jourez),卢克·德·凯斯梅克(Luc de Keersmaeker),弗朗诺伊斯·德·梅尔斯曼(Françoisde Meersman) Liu,Marijke Steenackers,Joris van Acker,Jan van den Bulcke,Vanden Broeck,Kris Vandekerkhove,Margot Vanhellemont。对于每个“文章”,提到的作者及其所属的机构是获得结果/分析的区域的指示。
在这项工作中,各种法国种类的木材都用文献中引用的方法(即碱性牛皮法和过氧化氢(H 2 O 2)漂白方法。拆除后,除了最初可用的大孔外,还创建了纳米孔。介孔结构增加了木材的总孔隙率,从而降低了其密度以及整个谷物的导热率。划定的木材作为未来的绝缘材料引起了极大的兴趣,具有出色的机械强度。法国是欧洲杨树的顶级生产者和出口商,因此,杨树具有最高的潜力,因为它的快速生长速度,低密度和低导热率,可以通过拆卸转化为热绝缘剂。