摘要的奥地利工程师,哲学家和政治经济学家Josef Popper-Lynkeus(1838-1921)是维也纳晚期启蒙运动的著名公共知识分子。在本文中,我们发掘并探索了Popper-Lynkeus的社会计划。它试图实施社会征兵,以无条件地保证每个人的基本商品和服务水平。我们评估了Popper-Lynkeus所谓的“理性”建议以及对经济学学科的预期后果所提供的经济和道德辩护。最后,基于我们对“无条件性”不同概念的拆卸重重,我们阐明了Popper-Lynkeus的社会计划与当代基本收入的当代建议之间的差异和差异,这两者都成为传统福利国家的替代方案。
为高性能选择应用设计二维卤化物钙钛矿需要深入了解控制其兴奋性行为的结构 - 陶艺关系。然而,尚未开发出由A位点和间隔阳离子进行修饰的内部和层间结构的设计。在这里,我们使用压力来协同调整内部和层间结构,并发现结构调制,从而改善了光电子的性能。在施加的压力下,(Ba)2(ga)Pb 2 I 7表现出72倍的光致发光和光电导率增长10倍。基于观察到的结构变化,我们引入了一个结构描述符χ,该结构描述χ描述了内部和间层间特性,并在χ和光致发光量子量产率之间建立了一般的定量关系:较小的χ与最小化的捕获激子的激子以及来自自由激子的最小生效发射。根据此原理构建,我们设计了一个钙钛矿(CMA)2(FA)Pb 2 I 7,该7 7具有较小的χ和令人印象深刻的光致发光量子产率为59.3%。
摘要:已经研究了四个新的构图复杂的钙棍蛋白酶,其中有多个(四个或更多)阳离子的钙钛矿位点。材料具有通用公式LA 0.5 SR 2.5(M)2 O 7-δ(M = Ti,Mn,Fe,Fe,Co和Ni),并已通过常规的固态合成合成。这些化合物是第一个报道的成分复杂n = 2 ruddlesden- popper perovskites的示例。使用粉末X射线衍射,中子衍射,能量分散X射线光谱,X射线光电子光谱和磁力测定法确定了材料的结构和性能。材料是同源性的,并采用具有以下单位细胞参数的原型I 4/ mmm空间群:A〜3.84Å和C〜20.1Å。能量分散X射线光谱的测得的组合物为LA 0.51(2)SR 2.57(7)Ti 0.41(2)Mn 0.41(2)Fe 0.39(2)CO 0.39(2)CO 0.38(1)Ni 0.34(1)Ni 0.34(1)O 7-δ,La 0.59(La 0.59(4)fe Co co co 0.55(6)Ni 0.42(4)O 7 -δ,LA 0.54(2)SR 2.49(13)MN 0.41(2)Fe 0.81(5)CO 0.39(3)Ni 0.36(3)NI 0.36(3)O 7 -δ和LA 0.53(4)SR 0.53(4)SR 2.55(19)SR 2.5(19)Mn 0.67(6) O 7 - δ。在中子衍射数据中未观察到磁性贡献,并且磁力测定法指示在低温下自旋玻璃转变。
摘要:已经研究了四个新的构图复杂的钙棍蛋白酶,其中有多个(四个或更多)阳离子的钙钛矿位点。材料具有通用公式LA 0.5 SR 2.5(M)2 O 7-δ(M = Ti,Mn,Fe,Fe,Co和Ni),并已通过常规的固态合成合成。这些化合物是第一个报道的成分复杂n = 2 ruddlesden- popper perovskites的示例。使用粉末X射线衍射,中子衍射,能量分散X射线光谱,X射线光电子光谱和磁力测定法确定了材料的结构和性能。材料是同源性的,并采用具有以下单位细胞参数的原型I 4/ mmm空间群:A〜3.84Å和C〜20.1Å。能量分散X射线光谱的测得的组合物为LA 0.51(2)SR 2.57(7)Ti 0.41(2)Mn 0.41(2)Fe 0.39(2)CO 0.39(2)CO 0.38(1)Ni 0.34(1)Ni 0.34(1)O 7-δ,La 0.59(La 0.59(4)fe Co co co 0.55(6)Ni 0.42(4)O 7 -δ,LA 0.54(2)SR 2.49(13)MN 0.41(2)Fe 0.81(5)CO 0.39(3)Ni 0.36(3)NI 0.36(3)O 7 -δ和LA 0.53(4)SR 0.53(4)SR 2.55(19)SR 2.5(19)Mn 0.67(6) O 7 - δ。在中子衍射数据中未观察到磁性贡献,并且磁力测定法指示在低温下自旋玻璃转变。
由于某些化学成分表现出所谓的杂化铁电性不当,近年来,近年来,ruddlesden-popper氧化物中温度依赖性的相变的次要氧化氧化物氧化物中的温度依赖性相变。然而,目前几乎没有理解这些相变的静水压力依赖性。本文中,我们介绍了对双层ruddlesdledlesden-popper阶段Ca 3 Mn 2 O 7和Ca 3 Ti 2 O 7的高压粉末同步X射线衍射实验和Abinitio研究的结果。在两种化合物中,我们都观察到一阶相变,结合了我们的密度功能理论计算,我们可以将其结合分配为极地A 2 1 AM和非极性ACAA结构。有趣的是,我们表明,尽管压力的施加最终有利于非极相,正如适当的铁电体所观察到的那样,但存在压力实际上可以增加极性模式振幅的响应区域。可以通过考虑八面体倾斜和旋转对静水压力及其三线性耦合与极性不稳定的旋转的多样化响应可以无障碍。
和SR +2以已知诱导超导性超导性的浓度,ND 2 CUO 4和LA 2 CUO 4。Electron doped (La 0.185 Pr 0.185 Nd 0.185 Sm 0.185 Eu 0.185 Ce 0.075 ) 2 CuO 4 and hole doped (La 0.18 Pr 0.18 Nd 0.18 Sm 0.18 Eu 0.18 Sr 0.1 ) 2 CuO 4 are synthesized and shown to be single crystal, epitaxially strained, and highly uniform.传输测量表明,所有生长的薄膜都在绝缘,而不是掺杂。退火研究表明,可以通过修饰氧气化计量和诱导金属性但没有超导性来调整电阻率。这些结果反过来又连接到扩展的X射线吸收良好的结构结果,表明高熵库层中缺乏超导性可能起源于Cu – O平面内的大变形(σ2>0.015Å2),这是由于A-部位阳离子阳离子尺寸变化引起的,这驱动了载货者本地化的本地化。These findings describe new opportunities for controlling charge- and orbital-mediated functional responses in Ruddlesden – Popper crystal structures, driven by balancing of cation size and charge variances that may be exploited for functionally important behaviors such as superconductivity, antiferromagnetism, and metal-insulator transitions while opening less understood phase spaces hosting doped Mott insulators, strange metals, quantum临界,伪胶囊和有序的电荷密度波。
La 3 Ni 2 O 7 、La 4 Ni 3 O 10 、La NiO 3 中 Ni 的价态由原来的 Ni 2.5+ 、Ni 2.67+ 、
摘要摘要基础是物质一元论的观点,本文解释了量子力学如何描述微观世界的客观性。指出,哥本哈根对哲学基本问题的解释所带来的挑战并不是必不可少的,因为它采用了波数据包倒塌假设,这是实施可重复测量的非唯一的。因此,与科学或哲学的角度相关的问题和意识是密不可分的结论并不严格。With regard to Karl Popper's philosophy of "three worlds", our quantum theory of measurement describes how the multiple observers probe into the micro system to obtain the objective knowledge about the microworld with objective quantum measurements, thus gives an ontological interpretation to the objective knowledge world (World 3) of Popper:the material world (World 1) interacts with the materialized carrier of spiritual perception world (World 2), forming the correlations or两个世界之间的纠缠。这些对应于包括主观世界在内的所有精神感知。在这里,可以通过客观量子测量来定义的客观部分构成了微型系统的客观知识世界(世界3)。随着客观知识世界的出现,信息从物质世界流向主观对象。信息流的方向定义了精神感知的物质载体,这与通常的物质世界不同。
N. Meftahi博士,A。J。Christofferson博士和Salvy Russo教授卓越科学卓越科学中心,RMIT大学,墨尔本,墨尔本,维多利亚州3001,澳大利亚电子邮件:Nastaran.meftahi.meftahi@rmit.rmit.edu.edu.edu.edu.edu.au.au M. A. A. A. Surmiak博士,S。J。J. J. J. lu,Ruiet,S。Ru。 M. Michalska女士,D。P。McMeekin博士和U. Bach教授莫纳什大学化学与生物工程系,维多利亚州莫纳什大学3800年,澳大利亚弧形卓越科学卓越科学中心,莫纳什大学,维多利亚州3800,澳大利亚,澳大利亚电子邮件:Adam.surmiak@monash.edmonash.edu d. angmo d. angmo,D.D.D. vak vak,A。A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A.克莱顿,维多利亚州3168,澳大利亚,J。Lu博士,J。LU博士材料综合技术的主要技术实验室,武汉技术大学,武汉430070,中国H. Deng。 3800,澳大利亚澳大利亚卡里亚·埃文斯化学与生物化学学院,佐治亚理工学院,亚特兰大,乔治亚州佐治亚州30332,美国教授,戴维·A·温克勒教授,洛杉矶特洛布斯大学,梅尔伯恩,梅尔伯恩,维多利亚州3086,澳大利亚国王,洛杉矶大学,洛杉矶,戴维·A·温克勒生物化学和化学系,不在*相应的作者†这些作者同样贡献了关键词:机器学习,准2D Ruddlesden-Popper Perovskites,太阳能电池,高吞吐量
