植物病原体的日益流行对全球粮食安全和农业可持续性构成了严峻挑战。传统的诊断方法虽然准确,但往往耗时、耗资源,不适合实时现场应用。便携式诊断工具的出现代表了植物病害管理的范式转变,可以快速、现场检测病原体,准确度高,且技术专长极少。本综述探讨了便携式诊断技术的开发、部署和未来潜力,包括手持式分析仪、智能手机集成系统、微流体技术和芯片实验室平台。我们研究了这些设备背后的核心技术,例如生物传感器、核酸扩增技术和免疫测定,重点介绍了它们在各种农业环境中检测细菌、病毒和真菌病原体的适用性。此外,这些设备与物联网 (IoT)、人工智能 (AI) 和机器学习 (ML) 等数字技术的集成正在改变疾病监测和管理。虽然便携式诊断在速度、成本效益和用户可访问性方面具有明显优势,但与灵敏度、耐用性和监管标准相关的挑战仍然存在。纳米技术、多重检测平台和个性化农业领域的创新有望进一步提高便携式诊断的有效性。通过全面概述当前技术并探索未来方向,本综述强调了便携式诊断在推进精准农业和减轻植物病原体对全球粮食生产影响方面的关键作用。
出于信息交换的利益,根据美国运输部的赞助,该文件被传播。美国政府对内容或使用不承担任何责任。美国政府不认可产品或制造商。贸易或制造商的名字仅出现在此处,因为它们对本报告的目的而言是必不可少的。本报告中的发现和结论是作者的发现,不一定代表资助机构的观点。本文档不构成FAA政策。咨询有关其使用的技术文档页面上列出的FAA赞助组织。该报告可在联邦航空管理局William J. Hughes技术中心的全文技术报告页面上获得:ActLibrary.tc.faa.gov中的Adobe Acrobat便携式文档格式(PDF)。
简介 便携式低场 MRI 为在家庭、学校、零售店、法庭、体育场和学术医疗中心以外的其他地点等野外环境中进行脑研究提供了可能性。将脑研究带给民众,而不需要研究参与者前往学术医院的固定 MRI 扫描仪,可以使数据库多样化并减少神经科学的偏见。1 便携式 MRI 可以让非医学研究人员(包括公民科学家)探索终极黑匣子——大脑——如何影响人类在现实世界中的表现,而这些情况在传统的医院研究环境中很难复制。潜在的研究用途包括教育研究和陪审员决策研究、经济决策和消费者选择、投票行为和艺术创作研究,其中许多仍处于推测阶段。2 学者们表示,新兴领域“神经法、神经经济学、教育神经科学、神经政治学、神经营销学、神经哲学和神经社会学可能会越来越多地将扫描融入到他们的研究中。” 3 与此同时,学者们警告称,当前的伦理和监管框架存在漏洞,可能会导致对未来 pMRI 研究参与者的保护不全面或无效。4
1:美国明尼苏达州明尼苏达州明尼苏达州,美国明尼苏达州。2:不列颠哥伦比亚大学,加拿大不列颠哥伦比亚省温哥华。简介在遥远野外设置中进行神经成像研究的便携式磁共振成像(PMRI)具有巨大的潜力,可以吸引以前从研究中排除的人群,包括在术神经科学数据库中代表性不足的少数和服务不足的社区。1然而,研究远离医疗机构和可能没有足够健康覆盖范围或已建立的初级保健关系的人口,这引发了如何管理偶然发现(IFS)的问题。这些发现可能会急切地保证临床检查。许多先前关于IFS返回研究参与者的指南(ROR)和IFS临床可行性的返回。2然而,在获得临床护理不良的人群中,一些评论员质疑IF是否可以作为实际问题可行,并建议减少IF或没有回报研究参与者。3其他评论员认为,历史上有优势的参与者社区具有其结果和IF的同等或更大的权利。4与
触觉接口可与功能性磁共振成像 (fMRI) 结合使用,使神经科学家和临床医生能够研究执行任意动态任务所涉及的大脑机制 [1]。新型材料和新技术的应用以及 MR 技术的进步使得机电一体化系统能够部署在 MR 环境中 [2],[3],[4],[5]。具有不同驱动原理和设计配置的 fMRI 兼容触觉接口用于人体运动控制实验,主要用于上肢运动。研究具有多自由度 (DoF) 的运动控制可以提供有关神经系统如何协调涉及多个关节的运动并处理耦合和非线性动力学的重要信息 [6],[7]。然而,肢体节段之间的动态相互作用通常会引起头部运动,从而导致脑部 MR 图像上的运动伪影 [8],[9],[10]。此外,每增加一个 DoF,对运动和肌肉活动的分析就会变得更加复杂。这表明,只有当目标神经过程需要时,才可以研究多关节运动 [11],[12]。虽然脑成像是观察整个大脑感觉运动控制神经过程的极少数非侵入性窗口之一,但它会产生噪声信号。传统上,由于安全和成本限制,
摘要 - 这项研究介绍了用于实时牛奶掺假检测的基于便携式,低成本和边缘计算系统的开发。利用AS7265X多光谱传感器和Arduino Nano 33 BLE Sense MicroController,该系统采用了优化的逻辑回归模型来识别具有近乎完美精度的牛奶样品中淀粉掺假的。与复杂的神经网络模型不同,逻辑回归模型提供了简单,低功耗和微控制器的有效操作。收集的光谱数据是实时处理的,结果通过蓝牙传输以立即进行分析。该系统表现出很高的准确性,可移植性和成本效益,使其适合在牛奶供应链的各个阶段使用,包括农场,加工设施和零售点。未来的工作将探讨其他掺假剂的检测以及基于云的分析的集成以增强监视能力。本研究提供了一种创新的方法来确保牛奶质量和消费者的安全。
摘要 - 我们介绍Chatblas,这是不同CPU/GPU配置上的第一个AI生成和便携式基本线性代数子程序(BLAS)库。这项研究的目的是(i)评估当前大语言模型(LLMS)生成用于BLAS操作的便携式和HPC库的功能,以及(ii)定义与HPC目标相互作用的基本实践和标准,以提高HPC目标以提高AI型HPC代码的可信度和绩效水平。必须使用设备特异性解决方案高度优化生成的C/C ++代码,以达到高水平的性能。此外,这些代码非常依赖算法,从而为这项研究增加了复杂性的额外尺寸。我们使用了OpenAI的LLM Chatgpt,并专注于向量 - 向量Blas Level-1操作。Chatblas可以生成功能和正确的代码,达到高追求性水平,并且可以竞争甚至可以为供应商库提供更好的性能。
摘要 太阳能树是一种融入太阳能技术的结构,就像树枝一样。太阳能树旨在强调太阳能技术的愿景,该项目的主要目标是引起人们对利用清洁能源的可能性的关注,清洁能源是我们日常生活中的重要方面之一,因为手机已成为不可或缺的元素,因此为手机充电同样重要。鉴于智能手机电池耗尽的速度很快,充电器已成为我们包中最必不可少的物品之一。我们到处旅行都带着它,没有它就活不下去,但当我们在没有电的地方或在长途旅行中没有时间找地方充电时,它总是让我们陷入困境。由于手机和日益恶化的能源问题,我们不得不想出给手机充电和运行低容量设备的方法。这不再局限于思考,而是付诸实践。由于当今时代对艺术和技术方面的重视,太阳能树的形状是经过特别选择的。这个概念的产生是因为树木可以利用阳光进行一种称为“光合作用”的过程,这有助于维持生态系统。太阳能电池以一种可以根据太阳光线入射的角度调整方向的方式固定在树枝上,该结构模仿树枝,逆变器将电池输出电压改变为电池充电所需的量。为了保持这些部件的正确形状,它们被放置在一个代表树根的盒子里。因此,我们有一个便携式充电器,可以在一天中的任何时间使用清洁的可再生能源。此外,这棵树尽可能靠近窗户,以接收尽可能多的阳光。该设计可以以道路和公共区域上的一棵大树的形式实现,以增加美感——手机、笔记本电脑和运行低容量设备。
摘要:在尼日利亚,频繁且长时间的断电一直是一个问题;尤其是在农村地区,那里的手机和其他移动电子设备的充电方式是使用发电机,这种发电机“不清洁”且非常耗费资金。尼日利亚拥有丰富的可再生能源资源,可以利用这些资源提供充电和电气化手段。本文介绍了一种户外便携式混合风能太阳能收集器的设计和实现,该收集器可用于在主电源中断、没有电源、外出户外活动期间以及可能没有电力供应的农村地区为便携式移动电子设备充电。便携式混合风能太阳能系统使用带有 LM2596 降压转换器的太阳能电池板、带有微型升压转换器的风力涡轮机和 18650 移动电源,以确保高效充电并为外部移动设备充电。太阳能电池板从太阳和风力涡轮机从风中获取的电能用于通过功率多路复用器为电池充电。此外,移动电源模块还可以提高电池的输出电压,然后可通过 USB 端口为手机和其他小型电子设备充电。在尼日利亚西南部的一个城市,研究人员在白天的户外对该系统进行了测试,以研究其性能。太阳能电池板能够在白天提供足够的电力为电池充电;但对于风力涡轮机来说,测试地点的风速不够高,无法产生足够的电压和功率来像太阳能电池板一样快速为电池充电。尽管如此,如果风速足够高,风力涡轮机可以产生足够的电压来为电池充电。在 100% 日照和 1.54 米/秒的风速下,开发的便携式混合收集器在白天的最高组合输出功率为 18.43 W。 关键词:混合风能太阳能收集器、太阳能电池板、风力涡轮机、风速、电池 1. 简介 多年来,尼日利亚的能源和电力状况一直是人们关注的主要和持续问题。超过 60% 的人口无法获得廉价电力,这凸显了解决能源危机的紧迫性 [1]。在尼日利亚,电力需求不断增加,这加剧了现有的供应不足。这一问题在没有电网系统的农村地区尤为明显,这凸显了探索可再生能源的必要性。尼日利亚农村地区的电力短缺凸显了开发可再生能源解决方案的重要性。尼日利亚在发电和配电方面的能源危机导致了许多问题,包括大多数行业关闭,生产率低下和其他不利的宏观经济影响 [2]。尼日利亚撒哈拉以南地区约 75% 的居民无法获得电力。即使是那些接入电网的人也仍然面临能源短缺。民众使用燃料或柴油发电机(不可再生能源)为手机和电池充电。