瑜伽近年来已成为世界各地许多人生活的常规部分。这对必要的瑜伽姿势进行了科学研究。瑜伽姿势估计是一种计算机视觉技术,可以预测人体的位置或姿势。姿势检测算法已被证明可用于姿势识别和提高瑜伽姿势的准确性。在当今的现代时代,ML和DL技术已被证明对于对象发现任务很重要。我们可以有效地使用该模型来识别不同重要的身体部位并实时估算用户姿势。为实现这一目标,我们用不同的瑜伽姿势图像训练模型。当图像被送入姿势估计模型时,它通过执行特征提取来分析图像并识别身体部位,表明其在屏幕上的位置。此外,该模型为每个检测提供了一个置信值,表明给定图像正确识别为输入的可能性。我们使用了不同的瑜伽姿势,例如骆驼姿势,下dog姿势,女神姿势,木板姿势,树姿势,Warrior2姿势来训练该模型,这使其在识别各种姿势方面非常准确。这项研究的主要目标是使用此检测技术来帮助人们确定他们正在执行的瑜伽姿势。此外,我们还解决了当前系统的缺点,例如它们的准确性差,高处理成本以及对各种身体形状和瑜伽样式的适用性限制。在本文中,我们提出了一种基于卷积神经网络(CNN)的方法来创建瑜伽立场检测系统。建议的技术旨在通过提供更精确,有效和广泛适用的解决方案来识别瑜伽姿势和产生反馈的方法,以改善当前系统的缺点。总体而言,基于技术的工具在我们的研究中的应用可能有助于设计更多定制和成功的瑜伽实践。我们的发现可以帮助构建虚拟助手和智能瑜伽垫等应用程序,从而改善瑜伽实践的可访问性和个性化。
ii.摘要................................................................................................................................................ 6
•预估计的HRNET具有80%精度,可生成关键的人体点•通过训练和测试方法定义的动作和测试方法•用90%精确度推断出具有90%精确度的动作识别•理解HRNet姿势估计关键点并设计算法,并能够检测诸如降落,饮食和斗争的行动,诸如范围内的行动•诸如表演,围绕,围绕,围绕,围绕,围绕,围绕着斗争的行动,该算法和进行后处理以显示输出•推理在边缘AI加速器上成功执行,其快速推理时间为50 ms,速度为10 fps,用于定义的动作
摘要 — 飞机检查的可靠性对飞行安全至关重要。飞机结构的持续适航性很大程度上取决于经过培训的检查人员对小缺陷的目视检测,这些检查任务昂贵、关键且耗时。为此,无人机 (UAV) 可用于自主检查,只要能够在绕目标飞行时定位目标并纠正位置即可。这项工作提出了一种解决方案,用于在近距离自主绕机身飞行以进行目视检查任务时检测飞机相对于无人机位置的姿态。该系统的工作原理是处理来自机载 RGB 相机的图像,将传入的帧与已知机身表面位置的自然地标数据库进行比较。该解决方案已在真实的无人机飞行场景中进行了测试,显示出其在高精度定位姿态方面的有效性。所提出方法的优势具有工业意义,因为我们消除了现有技术解决方案中存在的许多限制。索引词——视觉检查,自我定位,3D姿态,地标检测
Pencak Silat是群岛每个地区的当地智慧之一,是从Sabang到Merauke的种族舞蹈编舞的来源。从概念上讲,这种旋转的灵感来自群岛pencak silat的词汇移动运动,该运动是指环境领域(环境编排)中存在的动植物的运动。基于Alma M. Hawkins模型的创作过程理论,它包括几个感应,感觉,成像,转化和形成的阶段。各种武术探索了动作的构图和编舞,具有敏锐而坚定的印象,例如攻击,羽毛球,抵抗和埃拉克;变成柔软而流动的运动。此探索过程提供了舞蹈动力,因此来自各种群岛的Pencak Silat成为具有统一,复杂性和强度的编舞的艺术。受武术运动启发的舞蹈,作为新的成语编舞被称为Rancak Takasima。Rancak是Pencak Pencak Nusantara一词的首字母缩写,而Takasima具有魅力的意义。rancak takasima编舞是一部受到各种群岛pencak silat的习惯的新编排,被加工成一个新的成语编舞,赋予了兰卡·塔卡西玛·潘卡克(Rancak Takasima Pencak)艺术的光环和精神。本研究使用定性和实验方法和计算机视觉,其深度学习模型估计的GluOnCV姿势。这项研究的结果用新的成语编舞解释了兰开塔·高西马编舞模型。这项舞蹈工作具有动态动态动态动力,而群岛的概念pencak silat是指锋利而坚定的运动。这次兰开(Rancak takasima)编舞探索是一种舞蹈的体现,其灵感来自收集传统传统的概念以及在群岛各个角落发现的彭卡克艺术的元素。
1,2,3,4 Sambhram技术研究所摘要本文提出了一种使用Python实施的姿势检测技术实时姿势评估的方法。 所提出的方法利用媒介库(结合OpenCV)跟踪人体姿势地标并计算关键身体部位之间的角度。 基于这些角度,系统提供了用户姿势的反馈,重点是颈部对齐。 此方法在医疗保健,人体工程学和健身方面具有应用,为姿势校正提供了可访问的解决方案。 1引言姿势在维持整体健康和福祉中起着至关重要的作用。 不良的姿势与各种健康问题有关,例如背痛,颈部应变和迁移率降低。 传统的姿势矫正方法通常需要人类干预或专业设备。 但是,随着计算机视觉和机器学习的进步,现在可以使用消费级硬件(例如网络摄像头)提供实时姿势反馈。 本文使用Python,MediaPipe和OpenCV介绍了实时姿势评估系统。 该系统检测人体地标并计算关键点(例如肩膀,颈部和臀部)之间的角度,以评估姿势并提供反馈。 2背景姿势被定义为相对于彼此和环境的人体段的对齐,例如头部,躯干和四肢。 保持良好的姿势对于肌肉骨骼系统的最佳功能至关重要,可防止肌肉,韧带和关节的压力。1,2,3,4 Sambhram技术研究所摘要本文提出了一种使用Python实施的姿势检测技术实时姿势评估的方法。所提出的方法利用媒介库(结合OpenCV)跟踪人体姿势地标并计算关键身体部位之间的角度。基于这些角度,系统提供了用户姿势的反馈,重点是颈部对齐。此方法在医疗保健,人体工程学和健身方面具有应用,为姿势校正提供了可访问的解决方案。1引言姿势在维持整体健康和福祉中起着至关重要的作用。不良的姿势与各种健康问题有关,例如背痛,颈部应变和迁移率降低。传统的姿势矫正方法通常需要人类干预或专业设备。但是,随着计算机视觉和机器学习的进步,现在可以使用消费级硬件(例如网络摄像头)提供实时姿势反馈。本文使用Python,MediaPipe和OpenCV介绍了实时姿势评估系统。该系统检测人体地标并计算关键点(例如肩膀,颈部和臀部)之间的角度,以评估姿势并提供反馈。2背景姿势被定义为相对于彼此和环境的人体段的对齐,例如头部,躯干和四肢。保持良好的姿势对于肌肉骨骼系统的最佳功能至关重要,可防止肌肉,韧带和关节的压力。姿势不佳会导致各种健康问题,包括慢性背部和颈部疼痛,肺活量降低,疲劳,甚至长期的肌肉骨骼疾病。姿势不良的流行率正在上升,尤其是在长时间坐在书桌上或使用电子设备的个人中。根据各种研究,不当姿势可以显着增加脊柱畸形,例如脊柱侧弯,脊柱降临和脑脊液的风险。2.1传统的姿势校正方法,传统上,姿势校正依赖于自我意识,对工作场所的人体工程学调整以及物理干预(例如物理疗法)的结合。一种常见的方法涉及对个人进行正确的姿势的重要性,并为他们提供适当坐姿和站立的准则。虽然在某种程度上有效,但这些方法通常缺乏现实 -
实时身体姿势估计是计算机视觉中的关键组件,在各个域中找到了应用程序。这项研究深入研究了OpenCV和Mediapipe的合并,这是两个可靠的库,以实时实现精确有效的人体姿势估计。OpenCV以其计算机视觉功能而闻名,与MediaPipe联手,该公司提供了预先训练的机器学习模型,该模型明确制作了用于关键点的估计。这项合作能够准确检测和持续跟踪人体地标。该研究的方法是利用OpenCV的能力来管理视频输入和采用MediaPipe的姿势估算模型,以识别解剖关键。OpenCV负责重要的视频流操作,例如框架调整大小,颜色空间转换和降低噪声,优化了MediaPipe的专用模型的输入数据。随后,MediaPipe精巧地查明并跟踪关键的身体接头,从而赋予实时视频流或相机馈送中复杂人类姿势的实时估计。对该系统的全面评估包括对其准确性,实时性能和在不同条件下的鲁棒性的审查,包括遮挡和不同环境环境的情况。该系统在检测和持续跟踪关键点的功效,再加上其实时功能,揭示了其在多方面应用中的潜力,例如Sports Analytics,Healthcare,Healthcare,Human-Computer互动等。OpenCV和MediaPipe的融合封装了实时姿势估计的有希望的轨迹,为精确的人类姿势分析提供了坚固的框架。该研究的发现通过为实时姿势估计提供可靠,有效的解决方案,从而有助于推动计算机视觉领域的进步。这些进步具有影响各种行业和领域的希望,暗示了实时姿势估计技术的重大进步。
摘要 - 人类寿命中有铰接的物体。当前类别级别的关节姿势估计(CAPE)方法是在单个现实设置下使用每个类别的固定运动结构的。考虑到这些局限性,我们旨在研究估计单个RGB-D图像中具有未知运动学结构的多个铰接式对象的零件级别6D姿势的问题,并改革此问题设置为现实世界环境,并建议Cape-real(Caper-Real)(CAPER)任务设置。此设置允许语义类别中的各种运动结构,以及在对现实世界的观察中共存的多个实例。为了支持这项任务,我们构建了一个明确的模型存储库RAINT-48,并呈现有效的数据集生成管道,其中包含快速发音的对象建模(FAOM)和半实体的混合现实现实技术(Samert)。伴随管道,我们构建了一个大规模的混合现实数据集后Tmix和一个现实世界数据集后TVAL。伴随着刺山柑问题和数据集,我们提出了一个有效的框架,该框架利用RGB-D输入来估算单个正向通行中多个实例的零件级姿势。在我们的方法中,我们从RGB-D输入中介绍对象检测,以处理多个实体问题,并将每个实例分为几个部分。为了解决未知的运动学结构问题,我们提出了一个解析网络,以分析检测实例的结构,并构建一个对伪造姿势估计模块,以估算第6D姿势以及连接零件对的联合属性。广泛的实验表明,所提出的方法可以在开普敦,斗篷和实例级机器人组姿势估计问题上实现良好的性能。我们认为,它可以作为对刺山柑任务的未来研究的强大基准。我们工作中的数据集和代码将公开可用。
许多著名的研究工作[40,53,70]强调了准确的全身姿势估计的重要性,尤其是在涉及多个身体部位的行动成为信息交换的基本渠道的情况下。这尤其是在运动员训练[50],运动教练[42]和运动康复[11,61]等领域的应用。在这些情况下,从全身姿势中提取详细的运动学特征的能力对于这些交互式系统的有效操作至关重要。但是,在开放和现实世界中实施姿势捕获系统构成了巨大的挑战。这在很大程度上是由于目标运动在各个空间位置及其行动的多样性的不可预测性。此外,要考虑到幼稚用户的可接受性至关重要,尤其是当他们需要佩戴设备或留在特定区域以享受服务时。为了在用户舒适度和姿势估计精度之间达到平衡,我们寻求一种多功能,灵活和交互式的副驾驶,当他们在空旷的区域移动和行动时,可以积极了解用户的骨骼姿势。鉴于机器人技术的最新进展,采用视觉机器人为此目的成为有前途的解决方案。尽管如此,这在用视觉系统驱动机器人时构成了独特的挑战和问题。在这项探索性工作中,我们针对一个中心问题:如何使视觉机器人适应其位置和观点,以跨不同空间位置和动作类型进行最佳姿势估计?工作这对于基于视觉的系统至关重要,因为固定视角和用户的不同方向引起的遮挡可以显着降低准确性。解决这些问题时,本文介绍了Pepperpose,这是与类人生物机器人集成的以姿势估计为中心的机器人系统[6]。我们训练了机器人在移动目标时积极跟踪他们,并调整观点以改善姿势估计结果。因此,Pepperpose可以充当基本的动作感应平台,该平台消除了用户对戴其他设备或留在受限区域内的需求。我们在涉及30名参与者的现实世界中评估了该系统的性能。,我们通过利用从参与者的全身运动捕获诉讼中获得的同步高保真姿势来量化其姿势估计的精度,从而整合了惯性测量单元(IMUS),其轨道损失率以及向各种参与者行动中的最佳观察位置移动到最佳观察位置的速度。虽然这种机器人的当前成本可能无法承受,但我们强调了机器人姿势估计解决方案的潜力,该解决方案可能会提供更丰富的交互机会,对用户体验的影响很小。
根据给定序列预测人体运动是计算机视觉和机器学习中一项具有挑战性且至关重要的任务,它使机器能够有效地理解人类行为。精确预测人体姿势和运动轨迹对于各种应用都具有重要意义,包括自动驾驶、机器人技术和虚拟现实。本文提出了一种新方法来解决估计以 3D 姿势或 2D 轨迹表示的人体运动,以及使用 2D 图像和人体姿势/位置序列联合预测未来运动的相互关联的任务。我们提出了一种编码器-解码器架构,该架构利用具有自注意机制的 Transformer 网络,利用视觉上下文特征,结合 LSTM 来建模人体运动运动学。我们的方法在数量和质量上都比现有方法表现出持续显著的改进。在各种公共数据集上进行的大量实验,例如用于 3D 人体姿势估计的 GTA-IM 和 PROX,以及用于 2D 轨迹预测的 ETH 和 UCY 组合数据集,表明与当前最先进的方法相比,我们的方法大大减少了预测误差。