航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
Isuzu参加了由日本政府带头的L4计划的道路,在该道路上,它有助于从2026年开始在Expressways上实现实际应用和社会实施4级自动卡车的努力。该公司还在推进2020型型号的Giga卡车的商业化和市场推出,该卡车配备了主动巡航控制和一条车道保持援助系统,同时研究了专门针对重型卡车的自主驾驶技术,其中一些技术被用于大型汽车开发中。
PPP 服务是通过 BDS-3 标称星座中的 GEO 卫星广播的 PPP-B2b 信号提供的,根据《北斗卫星导航系统应用服务架构(V1.0)》,建设分为两个阶段: 第一阶段(至 2020 年):利用前三颗 GEO 卫星的 PPP-B2b I 分量,
• GPS 是一种卫星导航系统,由美国国防部发射的 24 颗卫星网络组成。GPS 最初用于军事用途,但在 20 世纪 80 年代,政府将该系统开放给民用。GPS 可在世界任何地方的任何天气条件下全天候工作。使用 GPS 无需订阅费或安装费。• 全球定位系统是一种卫星导航系统,由 24 颗轨道卫星网络组成,这些卫星在太空中运行一万一千海里,有六条不同的轨道。卫星在不断移动,24 小时内绕地球旋转两圈,即每秒 2.6 公里。• 全球定位系统 (GPS) 最初称为 NAVSTAR GPS,是一种卫星无线电导航系统,归美国政府所有,由美国太空军 (USSF) 运营。它是全球导航卫星系统 (GNSS) 之一,可为地球上或地球附近的任何地方的 GPS 接收器提供地理位置和时间信息,只要该位置与四颗或更多 GPS 卫星有畅通的视线即可。山脉和建筑物等障碍物会阻挡相对较弱的 GPS 信号。• 全球定位系统是一种空间导航和定位系统,由美国军方设计,可让单个士兵或一组士兵自主确定其位置,误差在 10 到 20 米以内。自主概念很重要,因为有必要设计一个系统,让士兵能够在没有任何其他无线电(或其他)通信的情况下确定自己所在的位置。• GPS 项目由美国国防部于 1973 年启动,第一艘原型航天器于 1978 年发射,24 颗卫星的完整星座于 1993 年投入运营。最初仅限于美国军方使用,根据罗纳德·里根总统的行政命令,从 20 世纪 80 年代开始允许民用。该系统为全球军事、民用和商业用户提供关键功能。它由美国政府维护,任何拥有 GPS 接收器的人都可以免费使用。
近年来,人们对在室内环境中使用低成本无电池标签定位物体和人员的兴趣日益浓厚,以便在物流、零售、安防等不同领域实现多种应用 [1]。UHF Gen.2 射频识别 (RFID) 标准技术是目前最流行的物品识别解决方案。不幸的是,它在设计时考虑了识别而非定位,因此商业读取器只能获得粗略的位置信息。已经提出了一些方法来提高定位精度 [2],但它们通常在恶劣的传播环境中不可靠或需要读取器端昂贵的硬件(例如,大型天线阵列)。与此同时,一些新的实时定位系统 (RTLS) 应运而生,通过采用超宽带 (UWB) 信号并利用其精细的时间分辨能力提供高精度定位 [3]。然而,当前基于 UWB 的定位系统使用的有源标签电流消耗大于 50 mA,这与能量收集或无线电力传输技术的利用不兼容,因此不可避免地需要电池或极低占空比操作 [4]。最近,遵循与标准 Gen.2 RFID 系统相同的反向散射原理,已经提出了一些解决方案,以实现与 UWB 反向散射信号一起工作的无电池标签,在定位精度方面取得了有趣的结果(约 5-15 厘米)[5]–[12]。尽管基于反向散射的架构在低复杂度和低功耗方面具有良好的特性,但它存在强大的链路预算(由于反射信号导致的双向链路)问题,再加上 UWB 频段非常保守的监管功率发射限制,将其应用限制在非常短距离的场景中(覆盖范围 < 10 米)[13]。本文介绍了一种使用无电池标签的 RTLS,它能够通过使用节能的 UWB 脉冲发生器将范围扩大到 10 米以上。在描述了系统的主要功能块之后,报告了实验结果。该系统是在欧洲航天局 (ESA) 资助的“LOST”(通过 RF 标签定位太空物体)项目内开发的。LOST 的目的是研究合适的技术来定位部署或漂浮在国际空间站或未来空间站内的物体。这种“室内”空间应用旨在跟踪环境中存在的每个带标签的物体,以避免潜在的危险情况,并使宇航员不会浪费极其宝贵的时间寻找丢失的工具。
• PNT 成为营救人员的关键 • 有时是失散人员,有时是绑架,有时是击落直升机/飞机…… • PNT 使 JPR 链的大部分功能成为可能: – 卫星(定位信标) – 监视(查找和跟踪要营救的人员) – 营救陆军(蓝军跟踪)
澳大利亚的会计,可持续性和审计和保证标准设置的机构安排构成了《 2001年澳大利亚证券和投资委员会法》第12部分(ASIC法案)中规定的澳大利亚金融报告系统。除了建立AASB,AUASB,他们各自的办公室和FRC外,ASIC行为还认识到其他政府和非政府组织在财务报告格局中的作用,包括澳大利亚证券和投资委员会(包括澳大利亚证券和投资委员会(ASIC)),这些公司审计委员会的审计委员会,专业帐户委员会,专业账户Bodies Bodies(PAB)和国际标准设置(PABS)和国际标准设置。其他组织(例如会计专业和道德标准委员会)也发挥作用。
1978 年,决定出版更多专业专著,涵盖原始飞行测试手册第 1 卷和第 2 卷的各个方面,包括飞机系统的飞行测试。1981 年 3 月,飞行测试技术组 (FTTG) 成立,以执行这项任务并继续编写飞行测试仪表系列卷。这个新系列的专著(AG237 除外,它是单独编号的)将作为单独编号的卷在 AGARDograph 300 中出版。1993 年,飞行测试技术组改组为飞行测试编辑委员会 (FTEC),从而更好地反映了其在 AGARD 内的实际地位。幸运的是,卷的工作可以继续进行,而不会受到这一变化的影响。
免责声明 本学术研究论文中表达的观点均为作者的观点,并不反映美国政府或国防部的官方政策或立场。根据空军指令 51-303,本文不受版权保护,但属于美国政府的财产。
Acq O&M - 收购相关运营与维护 ACAT - 收购类别 ADM - 收购决策备忘录 APB - 收购计划基准 APPN - 拨款 APUC - 平均采购单位成本 $B - 十亿美元 BA - 预算授权/预算活动 Blk - 区块 BY - 基准年 CAPE - 成本评估与计划评估 CARD - 成本分析要求说明 CDD - 能力开发文件 CLIN - 合同项目编号 CPD - 能力生产文件 CY - 日历年 DAB - 国防收购委员会 DAE - 国防收购执行官 DAMIR - 国防收购管理信息检索 DoD - 国防部 DSN - 国防交换网络 EMD - 工程与制造开发 EVM - 挣值管理 FOC - 全面作战能力 FMS - 对外军售 FRP - 全速率生产 FY - 财政年度 FYDP - 未来年份国防计划 ICE - 独立成本估算 IOC - 初始作战能力Inc - 增量 JROC - 联合需求监督委员会 $K - 数千美元 KPP - 关键性能参数 LRIP - 低速率初始生产 $M - 数百万美元 MDA - 里程碑决策机构 MDAP - 主要国防采购计划 MILCON - 军事建设 N/A - 不适用 O&M - 运营与维护 ORD - 运营需求文件 OSD - 国防部长办公室 O&S - 运营与支持 PAUC - 项目采购单位成本