1. 采用人工智能打击犯罪攻击:Emotet 木马是现代恶意软件中最臭名昭著的木马之一,是原型人工智能 (AI) 攻击的典型例子。Emotet 的主要传播方式是垃圾邮件钓鱼,通常通过发票诈骗诱骗用户点击恶意电子邮件附件来实现。Emotet 的作者最近在其木马中添加了一个新模块,用于窃取受感染受害者的电子邮件数据。尽管这种电子邮件泄露功能的来源尚未透露,但最近观察到 Emotet 在全球范围内发送结构化钓鱼电子邮件。这意味着它可以快速插入现有电子邮件线程并强烈敦促受害者点击恶意附件,该附件随后出现在最终的恶意电子邮件中。
国家地理和森林信息研究所 (IGN) 是法国地理和森林信息的参考运营商。IGN 目前正在建立一个雄心勃勃的国家数字孪生项目,其目标之一是对整个法国领土进行忠实、详细和精确的 3D 建模。IGN 目前还领导着 Lidar HD 项目,以每平方米 10 个点的密度通过 Lidar 覆盖大都市地区。LASTIG(智慧城市和可持续地区地理信息科学与技术实验室)在地理信息科学和技术方面开展有针对性的研究。该部门的研究涵盖地理或空间数据的整个生命周期,从获取到可视化,包括建模、集成和分析。LASTIG 对空间地理存储库特别感兴趣。这是 IGN 使命的核心。LASTIG 由四个研究团队组成,其中包括 ACTE 团队(采集和特征),该团队特别关注从卫星、机载或地面平台收集的遥感数据(图像、激光雷达、雷达)的收集和处理。LuxCarta Technology 是一家小型公司,拥有 30 年的地理数据生产经验,是世界领先的 2D/3D 地理数据生产商之一。LuxCarta 业务涉及 4 个主要市场:电信、城市规划、导航和民用及国防应用模拟。自成立以来,LuxCarta 开展了重要的研发工作,特别是致力于实现允许自动恢复地理数据的技术;研发团队特别开发了一条自动链,用于以公制精度对城市场景进行 3D 重建。
语言,大脑和学习中心(C-LABL)将在我们对多种语言如何在思维/大脑中相互作用,开发创新的纵向方法来研究多语言主义并培训下一代学者和研究领导者中的逐步改变。通过跨语言理论,神经科学和语言获取/处理培养合作研究,我们将重点关注多语言的效果 - 对于所涉及的语言,对他们的大脑,以及多种语言的学习和教学。c-labl分为三个研究领域(语言,大脑和学习),这些领域将通过关注语言距离的横切研究主题联系在一起。因此,C-labl的核心工作将研究多语言思维/大脑中多个语法的相互作用,主要关注语言距离(语言之间的相似性/差异)对发展,跨语言影响,神经认知的适应性的重要性,这是多语言经验的结果,以及其他语言学习。
● 开发创新、有趣且有影响力的学习和参与机会 ● 开发、规划、设计和促进面向不同受众的引人入胜且易于访问的公共项目,包括针对儿童、青少年、成人和家庭的课程、营地和学习机会 ● 与策展团队合作开发的展览解说、节目和资源 ● 管理学校艺术家计划,包括聘请和管理合同艺术家,以及监督预订和评估程序 ● 创建和促进内部学校项目,包括参观和研讨会 ● 协调外展活动 ● 为所有人创造受欢迎且易于访问的体验,消除参与障碍 ● 与参展和社区艺术家建立关系并密切合作 ● 在整个社区发展和培养关系和伙伴关系
1.Afia Abdi β-arrestin 偏向神经降压素受体 1 调节剂对多巴胺受体 D2 β-arrestin 的影响 招募顾问:Lauren Slosky 赞助计划:LSSURP 所在机构:明尼苏达大学,双子城 摘要:由于精神兴奋剂使用障碍对公共健康的影响不断升级,开发有效的药物疗法仍然是一个关键的未满足需求。神经降压素受体 1 (NTSR1) 是一种 G 蛋白偶联受体 (GPCR),在调节大脑中的多巴胺能信号通路方面不可或缺,使其成为这些疾病的有希望的治疗靶点。作为 GPCR,NTSR1 介导与 G 蛋白和 β-arrestin 的相互作用。针对 NTSR1 的平衡肽激动剂已在临床前成瘾模型中显示出潜在功效。尽管如此,它们在临床应用方面的进展受到诸如低血压、体温过低和运动障碍等不利靶向效应的阻碍。因此,我们最近开发了 β-arrestin 偏向的 NTSR1 配体,例如化合物 SBI-553,它选择性地减弱与甲基苯丙胺和可卡因诱导的运动活动相关的精神兴奋剂相关行为。尽管有这些有希望的发现,但其作用的潜在机制仍未完全了解。该项目旨在确定 NTSR1 共表达和激活对 D2 受体信号传导的影响,以阐明 SBI-553 消除靶向副作用的机制。利用 HEK293T 细胞、磷酸钙转染和生物发光共振能量转移 (BRET) 检测,我们希望帮助确定 SBI-553 最大限度减少不良反应的分子机制。这项研究可以为开发更有效、更安全的精神兴奋剂使用障碍药物疗法铺平道路。
○ Experience with web development (HTML, CSS, Javascript, React, Vue, Svelte, three.js, d3.js, leaflet, mapbox) ○ Experience with data analysis (Python, pandas, numpy, scikit-learn, SQL) ○ Experience with GIS tools (QGIS, ArcGIS, ArcMap, Leaflet, or MapBox) ○ Experience with command line interface and用于文件操作的脚本工具●具有灵活和独立工作以及指导的验证能力●较强的书面和口语交流技巧;能够记录对细节的关注并纳入关键反馈的能力●展示了研究技能和经验在跨学科团队上合作的经验●通过暴露于敏感/图形内容的学习最佳实践的兴趣●开放的探索,使用和学习新方法,框架和工具和工具●熟悉设计,访问和访问权限
芝加哥大学数据与计算中心正在寻求希望加深对前沿数据科学和计算研究的了解,同时在特定应用问题领域发展更多专业知识的博士后学者。数据与计算中心 (CDAC) 是芝加哥大学数据科学研究的智力中心和孵化器。我们与芝加哥大学计算机科学系位于同一地点,通过在实际应用的背景下探索新的数据和计算方法、基础和平台来促进发现。这个独特的项目为博士后提供了对数据科学中重要问题进行原创研究的机会,同时还可以在一个或多个互补领域(如行为科学、医疗保健和公共政策)发展专业领域的专业知识。该项目利用芝加哥大学排名靠前的课程、世界知名的教师以及充满活力且快速扩张的数据科学生态系统,将使博士后学者能够参与定义领域的数据科学和人工智能研究。我们的职位提供有竞争力的薪水、丰厚的研究经费津贴和福利。项目优势:
随着量子计算机的日新月异,对隐私构成威胁,大整数分解和离散对数等数学难题将通过 Shor 算法被破解。这将使广泛使用的密码系统过时。由于量子计算的进步,后量子密码学最近大受欢迎。因此,2016 年,美国国家标准与技术研究所 (NIST) 启动了一项标准化流程,以标准化和选择能够抵御量子计算机攻击的加密算法和方案,称为后量子密码学。标准化过程始于 69 份密钥封装机制 (KEM) 和数字签名 (DS) 的提交。4 年后,该流程已进入第三轮(也是最后一轮),有 7 个最终候选方案,其中 4 个是 KEM(CRYSTALS-Kyber、SABER、NTRU、Classic McEliece),其余 3 个提交是 DS(CRYSTALS-Dilithium、FALCON、Rainbow)。标准化过程大部分向公众开放,NIST 要求研究人员从理论和实施的角度研究提交的内容,以确定所提议候选方案的优点和缺点。