This work presents an air-coupled piezoelectric micromachined ultrasonic transducer (pMUT) with high transmitting acoustic pressure by using sputtered potassium sodium niobate (K,Na)NbO 3 (KNN) thin film with a high piezoelectric coefficient (e 31 ~ 8-10 C/m 2 ) and low dielectric constant ( r ~ 260-300) for the first time.已经测试了以104.5 kHz为谐振频率的制造的KNN PMUT,已测试以表现出前所未有的结果:(1)在10 cm的距离为109 db/v的高声压水平(SPL)为10 cm,比基于ALN的PMUT的频率高8倍; (2)仅4伏峰峰幅度的低压操作(V P-P); (3)良好接收灵敏度。因此,这项工作介绍了一类新的高SPL和低驾驶电压PMUT,用于在包括但不限于触觉反馈,扬声器和AR/VR系统在内的各个领域的潜在应用中。关键字
自史前时代以来,人类就依赖植物作为食物和药物。即使在现代药物唾手可得的国家,替代疗法仍然受到高度重视并被广泛使用。与现代药物不同,许多植物药尽管缺乏来自受控临床试验的安全性和有效性数据,并且作用机制通常不明确,但仍被广泛使用。造成这种情况的原因是许多植物药的成分复杂且不明确,作用机制可能涉及多个因素,并且靶点多种多样。在这里,我们回顾了普遍存在的电压门控钾通道 KCNQ 亚家族作为植物药靶点的新发现的重要性,包括罗勒、刺山柑、芫荽、薰衣草、茴香、洋甘菊、生姜以及山茶、槐树和野桐属植物。我们讨论了这些植物对癫痫、高血压和糖尿病等疾病的传统用途的影响,以及植物次生代谢物对 KCNQ 通道影响的分子机制。
钾双离子电池(K-DIBS)由于其高安全性和功率密度引起了极大的兴趣。但是,为K-Dibs实现高率和良好的环状阳极仍然是一个巨大的挑战。在此,层次的TIS 2被认为是K-Dibs的有吸引力的阳极,该阳极的排放能力为91.0 mA H G-1,同时被放电/充电到半细胞中的2000个周期。有趣的是,这种稳定的能力归因于K +诱导的相变的机理。原位特征和第一原理计算表明,插入的K +最终是产生热力学稳定的TI-S层之间的支柱,最终最终是TIS 2相。可靠的K 0.25 Tis 2相显示扩大的层间空间,增强的电子电导率以及较低的扩散屏障,可以使K +的高度稳定和快速存储。此外,首次报道了基于Tis 2阳极和中碳微粒阴极的新型K-DIB。K-DIB在100 mA g-1处实现75.6 mA H G-1的可逆能力,并在5000 mA g-1时保持了85.8%的容量保留/充电,可容纳85.8%的能力保留。这种机械研究为分层硫化物/硒化的反应过程提供了新的见解,并将促进其在安全和高功率K-DIB中的应用。
以下不良影响包括与其他短期或长期使用报告的效果。血液和淋巴系统疾病非常罕见的血小板减少症,白细胞减少症,贫血(包括淋巴结和性贫血),肿瘤细胞增多症。免疫系统疾病罕见的超敏反应,过敏反应和过敏反应(包括低血压和休克)。非常罕见的Angioneyerotic水肿(包括面部水肿)。精神疾病非常罕见的迷失方向,抑郁,失眠,噩梦,烦躁,精神病。神经系统疾病常见的头痛,头晕。罕见的脾气暴躁,疲倦。非常罕见的时代症,记忆力障碍,抽搐,焦虑,震颤,无菌性脑膜炎,味觉障碍,脑血管事故。未知的混乱,幻觉,感觉不适的眼睛疾病非常罕见的视觉障碍,视力模糊,复视。未知的视神经炎。耳朵和迷宫疾病常见的眩晕。非常罕见的耳鸣,听力受损。心脏疾病不常见*心肌梗死,心脏衰竭,呼吸症,胸痛。未知的Kounis综合征血管疾病
动脉粥样硬化是多种心血管疾病的危险因素,与全球范围内的高发病率和死亡率相关。尽管动脉粥样硬化的发生发展涉及许多复杂的过程,但其发病机制尚不清楚。炎症和内皮细胞损伤对动脉粥样硬化的作用持久,导致脂质和纤维组织在动脉内膜堆积形成斑块,进而促进动脉粥样硬化的发生。Nod样受体蛋白3(NLRP3)炎性小体被认为是脂质代谢和炎症之间的纽带。长钾外流是NLRP3的重要激活剂,具有启动和调节的作用。现有的针对NLRP3信号通路的动脉粥样硬化药物大多以IL-1为靶点,而针对钾外流这一关键环节的药物则相对较新。本综述讨论了 NLRP3 炎症小体作为动脉粥样硬化免疫炎症通路的关键调节剂的作用。此外,还整合了当前关于 NLRP3 炎症小体启动和激活通路的知识,强调了钾参与的流出相关蛋白。我们重点介绍了 NLRP3 炎症小体通路的潜在治疗方法,特别是针对靶向药物的钾流出通道。总之,这些见解表明,针对 NLRP3 炎症小体是治疗动脉粥样硬化的重要抗炎疗法。
自史前以来,人类已经取决于食品和医学的植物。即使在现代药物可以使用现代药物的国家中,替代性治疗仍然受到高度重视和常用。与现代药品不同,尽管缺乏从受控临床试验中得出的安全性和有效性数据,但许多植物药仍在广泛使用中,而且通常不清楚作用机制。为此做出贡献是许多植物药的复杂且不确定的组成和可能的多因素机制和多个靶标。 在这里,我们回顾了电压门控钾通道无处不在的KCNQ亚家族作为植物药的靶标的新发现的重要性,包括罗勒,卡普斯,香菜,薰衣草,薰衣草,茴香,茴香,洋甘菊,ginger,ginger,sophoria,sophoria,soperora和mallotus。 我们讨论了这些植物对疾病的传统使用的影响,例如癫痫发作,高血压和糖尿病,以及植物次生代谢物对KCNQ通道的分子机制。为此做出贡献是许多植物药的复杂且不确定的组成和可能的多因素机制和多个靶标。在这里,我们回顾了电压门控钾通道无处不在的KCNQ亚家族作为植物药的靶标的新发现的重要性,包括罗勒,卡普斯,香菜,薰衣草,薰衣草,茴香,茴香,洋甘菊,ginger,ginger,sophoria,sophoria,soperora和mallotus。我们讨论了这些植物对疾病的传统使用的影响,例如癫痫发作,高血压和糖尿病,以及植物次生代谢物对KCNQ通道的分子机制。
血液中的抽象钾浓度对于患有慢性肾脏疾病的大量患者群体起着至关重要的作用。连续监测血钾对于降低相关风险至关重要。基于家庭护理的小型测量套件将提高患者安全性并降低医疗费用。当前,离子选择电极(ISE)正在进化用于血液钾监测的应用。常规ISE是电位计量学或导电测量值。常规ISE需要一个参考电极来比较离子浓度的变化。这些参考电极由于不适当的填充溶液,连接堵塞和泄漏而随时间漂移,因此限制了传感器的寿命。在本文中,我们使用基于阻抗的测量来开发了一种无参考的固态ISE,以感知钾离子以克服漂移问题。使用阻抗测量评估钾选择性膜上钾选择性膜的灵敏度和选择性。开发的ISE在钾溶液(KCL)中以各种浓度扫描。另外,通过将电极存储在1 mM KCl溶液中40天来评估所提出的钾选择性电极的寿命。因此,微型钾选择性电极可以帮助那些需要连续监测血液钾水平的患者。
Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。 框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵Nazeri,Gholam Hossein; Mastour,Ramin* +; Fayaznia,穆罕默德; Parviz高级材料研究中心Keyghobadi,P.O。框16765-3574 Tehran,I.R。 伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。 以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。 通过将钾变成硫铵的钾产量差异。 发现产品的产率和纯度都从磺胺钾开始。 关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。 引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。 二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。 二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。 二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。 该化合物的潜在实际用途是替代高氯酸铵框16765-3574 Tehran,I.R。伊朗摘要:使用-30°C的硫酸和硝酸混合物进行硫氨酸钾的硝化。以硫酸与硝酸的摩尔比(1:3.5)优化了反应时间。通过将钾变成硫铵的钾产量差异。发现产品的产率和纯度都从磺胺钾开始。关键词:硫钾钾,二硝基酸,硝酸,二硝基铵,二硝基钾。引言Dinitramide Salts是一种独特的氮气氧,于1988年首次发现[1,2]。二硝酰胺盐具有较高的氧气含量,并在不同的柜台上制备,包括铯,铵和肼盐。二硝基胺阴离子的弹药盐(NH 4 N(NO 2)2)或ADN比硝酸铵具有热敏感性和更敏感的敏感性,但比相关的相关的n-n-n-n-dinitro衍生物(如谷氨酸氨基酸铵(如杏仁粉)(如杏仁粉(r-n(r-n(r-n(r-n(r-n(r-n no 2),2)2)),它比相关的n-n-n-n-dinitro衍生物更稳定。二硝酸根阴离子与各种阳离子形成富含氧气的盐的能力使其成为固体推进剂中能量氧化剂发展的有前途的候选者。该化合物的潜在实际用途是替代高氯酸铵