联合学习是一种分散的方法,用于训练Glo-Bal机器学习模型而无需在参与者之间共享数据,并且它已成为必须保护有关各方数据的情况下存在的关键解决方案。这在数据驱动的预后,健康管理和异常检测系统中非常重要,因为关键数据所有权在几个原始设备制造商和运营商之间划分。但是,对这项技术的适当提出需要在基础架构上进行大量的前期投资,因为计算,能源和网络能力必须支持边缘上的增加负载,这代表了从集中式范式转移。尽管有这些要求,但汽车行业对这项技术作为协作推动者的潜力表现出了极大的兴趣。该技术的隐私益处得到了充分的认可,但是通常不加区分地使用它,而无需透彻考虑其适当性。为了使这一详细的系统映射进行了详细的系统文献映射,通过分析,我们就联合框架的使用方面的有效性提供了对预测性维护和自动行业中异常检测应用的特定挑战的见解。此外,我们通过确定对该技术实施确实有意义的汽车行业的现实世界应用来做出贡献。我们的研究测试了每个人如何响应不同的数据方案。这些发现突出了对量身定制方法的需求,以满足每个应用程序的独特需求。在此基础上,我们使用广泛采用的模型和聚合策略进行了实验分析,以评估在模拟现实世界条件的各种数据拆分配置下,在各种数据拆分配置下评估了Fedeed Learning的性能。结果表明,FedAvg在平衡数据方面的表现最佳,而FedProx在IMBA分布中表现出色,其正则化技术解决了问题。虽然联邦学习持有承诺,但其实施可能并不总是证明成本是合理的,尤其是如果FraMework仅解决了一些关键挑战时。裁缝联合配置可以优化汽车行业的预测性维护和异常检测,但是要仔细考虑有用性和基础设施成本,这对于长期成功而言是限制的。
1再生加工厂有限责任公司,34176 US Highway 19 N,棕榈港,佛罗里达州34684,美国; harrell@regenerativeplant.org博士2伯尔尼大学伯尔尼大学解剖研究所,瑞士伯尔尼,伯尔尼2号; valentin.djonov@unibe.ch 3 3心理学系,关于生物和化学危害的有害作用研究中心,Kragujevac大学医学科学学院,69 Svetozara Markovica Street,34000 Kragujevac,塞尔维亚; ana.volarevic@medf.kg.ac.rs 4 Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia 5 Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000诺维·萨德(Novi Sad),塞尔维亚 *通信:vladislav.volarevic@faculty-pharmacy.com;电话: +381-3430-6800
由于预训练的深度学习模型大量可用,迁移学习在计算机视觉任务中变得至关重要。然而,从多样化的模型池中为特定的下游任务选择最佳的预训练模型仍然是一个挑战。现有的衡量预训练模型可迁移性的方法依赖于编码静态特征和任务标签之间的统计相关性,但它们忽略了微调过程中底层表示动态的影响,导致结果不可靠,尤其是对于自监督模型。在本文中,我们提出了一种名为 PED 的富有洞察力的物理启发方法来应对这些挑战。我们从势能的视角重新定义模型选择的挑战,并直接模拟影响微调动态的相互作用力。通过捕捉动态表示的运动来降低力驱动物理模型中的势能,我们可以获得增强的、更稳定的观察结果来估计可迁移性。在 10 个下游任务和 12 个自监督模型上的实验结果表明,我们的方法可以无缝集成到现有的排名技术中并提高其性能,揭示了其对模型选择任务的有效性以及理解迁移学习机制的潜力。代码可在 https://github.com/lixiaotong97/PED 上找到。
摘要目的:这项研究旨在比较各种抗氧化剂在防止阿霉素诱导的睾丸毒性和随后在大鼠中的男性不育症的组织学影响。研究设计:横断面研究。研究的地点和持续时间:这项研究是在2023年5月至2024年4月在巴基斯坦白沙瓦白沙瓦医学院的动物室和组织病理学实验室进行的。方法:研究中包括120只雄性大鼠。将大鼠分为六组:对照组,仅阿霉素组和四个接受阿霉素的治疗组以及不同的抗氧化剂。施用的抗氧化剂是维生素C,维生素E,辅酶Q10和硒。组织学分析,以评估抗氧化剂的损伤和保护作用的程度。结果:仅阿霉素组显示出具有统计学意义的组织学损害,包括精子发生和生精小管的变性的明显减少。抗氧化剂治疗的组表现出显着的保护作用,硒组表现出最高的保护水平,非常类似于对照组,其次是维生素E和辅酶Q10,这也提供了睾丸结构的实质性保存。结论:该研究得出的结论是,抗氧化剂,尤其是硒,维生素E和辅酶Q10,为大鼠抗霉素诱导的睾丸毒性提供了重大保护。这些发现表明可能使用这些抗氧化剂来缓解与阿霉素治疗相关的雄性不育症。
摘要——人工智能 (AI) 的快速发展需要对其潜在的负面影响和不可否认的好处进行批判性评估。本文深入探讨了人工智能在当代世界的多方面危险。通过研究现实世界的例子,本文探讨了人工智能如何通过算法偏见加剧现有的不平等,如何通过取代工作来扰乱劳动力市场,以及如何引发对隐私侵犯和不可预见的后果的担忧。通过强调这些风险,本文强调了负责任地开发和部署人工智能的重要性。它提倡建立强有力的道德框架和缓解策略,以确保人工智能成为积极社会变革的力量,减轻潜在危险并促进其负责任的应用,以造福人类。
本研究是试图确定印度中部恰蒂斯加尔邦Bilaspur Smart City附近的热电厂附近的森林种植库存的碳库存和碳固存潜力。非破坏性抽样方法用于估计地上生物量和地下生物量。为每棵单独的树测量乳房高度(DBH)处的高度和直径。制作了同类方程,以估计树种的碳储存。在国家热电厂周围记录了35种树种,半径为30公里,在四个不同的方向(东,西,北部和南方)。结果表明,ficus benghalensis是发现碳储存量最大的物种,其次是ficus eligiosa。根据本研究,开发的异形模型可以进一步估算国家热力公司发电厂及其周围森林植被中的碳库存,以及其他热带落叶林。
通过观察、问卷调查和其他技术,心理学家已经能够引出个体操作员(通常是飞行员)的心理模型。然而,将设计与特定个体的心理模型进行比较只能提供非常具体的信息;我们感兴趣的是设计是否容易产生模式混淆,为此,将设计与通用心理模型进行比较比将设计与个体心理模型进行比较更有用。这种通用模型可以从培训材料中提取(培训手册的目的之一,通常是隐含的,就是诱导足够的心理模型),也可以指定为明确的要求(例如,“这个按钮应该像一个切换按钮一样运行”)。认知研究对这些模型的性质提供了两个重要见解:首先,它们可以用称为“状态机”的数学结构紧凑地表示;第二,它们往往相当简单(这可以通过应用两个规范的简化来解释[3])。
摘要 - 电脑摄影仪(EEG)已被广泛用于脑部计算机界面(BCI),这使瘫痪的人能够由于其便携性,高时间分辨率,较高的时间分辨率,易用性和低成本而直接与外部设备进行通信和控制。基于稳态的视觉诱发电位(SSVEP)基于BCI的BCI系统,该系统使用多种视觉刺激(例如计算机屏幕上的LED或盒子)在不同频率上流动的数十年来,由于其快速通信速率和高信号速率和高信号率而被广泛探索。在本文中,我们回顾了基于SSVEP的BCI的当前研究,重点介绍了能够持续,准确检测SSVEP的数据分析,从而可以进行高信息传输率。在本文中描述了主要的技术挑战,包括信号预处理,频谱分析,信号分解,特定规范相关性分析及其变化以及分类技术的空间过滤。还讨论了自发性大脑活动,精神疲劳,转移学习以及混合BCI的研究挑战和机遇。
桑给巴尔革命政府 (RGZ) 已决定利用其海洋资源推动《桑给巴尔发展愿景 2050》(RGZ,2020a)和《桑给巴尔蓝色经济政策》(RGZ,2020b)中概述的发展议程。决定将桑给巴尔的长期战略方向建立在蓝色经济上,一方面是因为其内陆资源有限,另一方面是因为其战略地理位置为创造大量海洋财富提供了机会。迄今为止,典型的桑给巴尔人的生计主要依赖于沿海和海洋服务,因为桑给巴尔的经济一直以旅游业(包括海滩)、小规模渔业和海上贸易为主。然而,尽管沿海和海洋资源具有增长潜力,但人类和自然发展的压力对桑给巴尔人民的发展和福祉构成了重大挑战。认识到这一潜力后,桑给巴尔政府已将蓝色经济作为实现桑给巴尔可持续发展的框架。本文回顾了蓝色经济的概念、它与桑给巴尔的关系以及如何利用它提供的发展机遇。特别是,本文确定了蓝色经济的优势和现有机遇,以及如何利用这些优势和机遇应对发展挑战并实现社会效益最大化。本文认识到,桑给巴尔蓝色经济概念的实施尚处于早期阶段。因此,本文重点关注与桑给巴尔蓝色经济战略制定有关的问题。本文旨在促进建设性讨论,以丰富和补充桑给巴尔政府为制定这一至关重要的战略所做的努力。本文的结构如下。第 2 节简要介绍了蓝色经济的概念,第 3 节讨论了蓝色经济对沿海国家特别是桑给巴尔具有重要意义的原因。第 4 节介绍了桑给巴尔蓝色经济的现状,第 5 节讨论了制定实现可持续和有竞争力的蓝色经济战略所需的关键步骤。第 6 节强调了制定战略选择以推动蓝色经济发展的必要性,第 7 节讨论了体制挑战。第 8 节总结了本文。