关于 LG Electronics USA LG Electronics USA, Inc. 总部位于新泽西州恩格尔伍德克利夫斯,是 LG Electron-ics, Inc. 的北美子公司,LG Electron-ics, Inc. 是一家市值 540 亿美元的全球技术和制造创新企业。在美国,LG 销售各种创新家用电器、家庭娱乐产品、手机、商用显示器、空调系统、太阳能解决方案和汽车零部件。 “Life's Good” 营销主题涵盖了 LG 如何通过超越今天和明天的期望来致力于为人们带来幸福。LG 是 2019 年 ENERGY STAR® 年度持续卓越合作伙伴。www.LG.com。媒体联系人:LG Electronics, Inc. LG-One Taryn Brucia Tripp Potts +1 201 816 1287 +1 502 235 8040 taryn.brucia@lge.com tripp.potts@lg-one.com
摘要:单分子磁铁{Mn 84}是对理论的挑战,因为它的核性很高。我们使用无参数理论直接计算两个实验可访问的可观察到的可观察到的可观察到的磁化值,最高为75 t和温度依赖的热容量。特别是,我们使用第一个原理计算来得出短期和远程交换相互作用,并计算所有84 MN S = 2旋转的所得经典Potts和Ising Spin模型的确切分区函数,以获得可观察的物品。通过使用绩效张量张量网络收缩来实现后一种计算,这是一种用于模拟量子至上电路的技术。我们还合成了磁铁并测量其热容量和磁化,观察理论与实验之间的定性一致性,并确定热容量中异常的颠簸和磁化强度的高原。我们的工作还确定了大磁铁中当前理论建模的某些局限性,例如对小型,远程交换耦合的敏感性。
Aizen,M。A.和Feinsinger,P。(2003)。蜜蜂不做?昆虫传粉媒介动物群和花授粉对栖息地破碎的反应。景观的变化方式:美洲的人类干扰和生态系统碎片(pp。111–129)。Springer。 https://doi。org/10. 1007/978- 3- 662-05238-9_ 7 Aizen,M.A.,Garibaldi,L.A.,Cunningham,S.A。,&Klein,A.M。(2009)。 农业多少取决于传粉媒介? 从农作物生产的长期趋势中的课程。 植物学纪事,103(9),1579–1588。 https:// doi。org/10. 1093/aob/mcp076 Bartomeus,I.,Potts,S。G.,Steffan-Dewenter,I.,Vaissiere,B.E.,Woyciechowski,M. C.和Bommarco,R。(2014)。 昆虫传粉媒介对作物产量和质量的贡献随农业强化而异。 peerj,2,e328。 https://doi。Org/10。7717/peerj。328Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2014)。 使用LME4拟合线性混合效应模型。 ARXIV预印ARXIV:1406.5823。 Bennett,J.M。,Steets,J。 A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-Springer。https://doi。org/10. 1007/978- 3- 662-05238-9_ 7 Aizen,M.A.,Garibaldi,L.A.,Cunningham,S.A。,&Klein,A.M。(2009)。农业多少取决于传粉媒介?从农作物生产的长期趋势中的课程。植物学纪事,103(9),1579–1588。https:// doi。org/10. 1093/aob/mcp076 Bartomeus,I.,Potts,S。G.,Steffan-Dewenter,I.,Vaissiere,B.E.,Woyciechowski,M. C.和Bommarco,R。(2014)。昆虫传粉媒介对作物产量和质量的贡献随农业强化而异。peerj,2,e328。https://doi。Org/10。7717/peerj。328Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2014)。使用LME4拟合线性混合效应模型。ARXIV预印ARXIV:1406.5823。Bennett,J.M。,Steets,J。 A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-Bennett,J.M。,Steets,J。A.,Burns,J.H.,Durka,W.,Vamosi,J.C.,Arceo-
所有智能都是集体智能,因为它是由必须与系统级目标保持一致的部分组成的。因此,了解通过对齐的部分促进或限制问题空间导航的动态将影响生命科学和工程学的许多领域。为此,考虑一个位于平面图顶点上的系统,其成对交互由图的边缘规定。这样的系统有时可以表现出长程有序,将宏观行为的一个阶段与另一个阶段区分开来。在相互作用系统的网络中,我们可以将自发排序视为一种自组织形式,模拟神经和基础认知形式。在这里,我们讨论了有序相存在的图拓扑必要条件,着眼于寻找具有局部相互作用的系统维持有序目标状态的能力的限制。通过研究三个模型系统(Potts 模型、自回归模型和分层网络)中域壁形成下自由能的缩放,我们展示了图上相互作用的组合如何阻止或允许自发排序。作为一个应用,我们能够分析为什么像生物学中普遍存在的多尺度系统能够组织成复杂的模式,而基本的语言模型则受到长序列输出的挑战。
在处理生物物理学中的复杂概率时,已经提出了机器学习作为理论建模的一种替代方法。但是,从这个角度来看,我们认为更成功的方法是这两种方法的正确组合。我们讨论了来自物理建模神经元处理的想法如何导致计算神经网络的早期表述,例如Hopfield Networks。然后,我们展示了如何通过共享的能量代表来彼此相互关联的Potts模型,Boltzmann机器和Transformer架构等模型学习方法。我们总结了最新的效果,以建立这些联系,并提供有关如何整合物理建模和机器学习如何成功解决生物分子结构,动态,功能,进化和设计方面的最新问题的示例。实例包括蛋白质结构预测;分子动力学模拟的计算复杂性和准确性的提高;更好地推断了蛋白质突变的影响,从而改善了进化建模,最后机器学习如何彻底改变了蛋白质工程和设计。超越了自然存在的蛋白质序列,讨论了与蛋白质设计的连接,其中合成序列能够折叠到由植根于物理原理的模型驱动的自然存在的基序。我们表明,该模型是“可学习的”,并提出了它在可以折叠成目标结构的独特序列的生成中的未来使用。
我们展示了三种类型的变换,它们在临界状态下建立了厄米和非厄米量子系统之间的联系,可以用共形场论 (CFT) 来描述。对于同时保留能量和纠缠谱的变换,从纠缠熵的对数缩放中获得的相应中心电荷对于厄米和非厄米系统都是相同的。第二种变换虽然保留了能量谱,但不保留纠缠谱。这导致两种类型的系统具有不同的纠缠熵缩放,并导致不同的中心电荷。我们使用应用于自由费米子情况的膨胀方法来展示这种变换。通过这种方法,我们证明了中心电荷为c = −4的非厄米系统可以映射到中心电荷为c = 2的厄米系统。最后,我们研究了参数为φ →− 1 /φ的斐波那契模型中的伽罗瓦共轭,其中变换既不保持能量谱也不保持纠缠谱。我们从纠缠熵的标度特性证明了斐波那契模型及其伽罗瓦共轭与三临界Ising模型/三态Potts模型和具有负中心电荷的Lee-Yang模型相关联。
量子相变的特征是围绕过渡的关键区域中的通用缩放定律。通过量子千里布尔 - Zurek机制的关键实时动力学也表现出了这种普遍性。在最近的Rydberg原子量子模拟器上的实验中,kibble-Zurek机制已用于探测量子相变的性质。在本文中,我们分析了与此方法相关的警告,并制定了提高其准确性的策略。fo for-我们研究边界条件的效果,端点的位置和一些微小的扭结操作员定义。特别是,我们表明,最直观类型的扭结类型的临界缩放对正确的端点选择非常敏感,而更高级类型的扭结类型表现出非常强大的通用缩放。fur-hoverore,我们表明当在整个链上跟踪扭结时,固定边界条件提高了缩放的准确性。出乎意料的是,无论选择固定边界条件是对称还是反对称的,千里布尔 - Zurek临界缩放率似乎同样准确。最后,我们表明,在长链的中央部分提取的扭结密度遵守所有类型的边界条件的预测通用缩放。
一组可再生和不可再生的资源将使人们受益的可再生资源被理解为自然资本资产(NCAS),并支持我们的经济活动所依赖的生态系统服务(Guerry等,2015; Leach等,2019)。生态系统服务(ES)被广泛定义为大自然为人类提供的服务,这些服务可能会变化,以及一些经济活动,例如农业,牲畜和林业从中受益。通常将它们归类为供应,监管,支持或文化服务。一些例子包括水和食物,授粉,物种栖息地,娱乐以及心理和身体健康(FAO,2022年)。一个生态系统需要正常运行,以便能够提供此类服务。彼此之间相互作用的物种和自然环境的微妙平衡将允许足够的生态系统功能,因此可以提供生态系统服务(Vos等,2014)。生态系统服务中断的原因有所不同,例如气候变化,富营养化和生物多样性损失。每当生态系统中的物种减少时,后者就会证明。这种损失可能会对生态系统的平衡产生负面影响,并破坏或阻碍生态系统服务的提供。例如,授粉剂的丧失,例如蜜蜂或飞蛾的物种,会影响授粉的生态系统服务(从这里开始的授粉服务)。同时,这可能会影响几种作物的生产并带来经济损失(Potts等,2016)。
行政区办公室 724-869-4779 Travis Cavanaugh,行政区经理 x1 travis@economyborough.org Ted Brickner,公共工程领班 x4 ted@economyborough.org John Thomas,法规执行/分区官员 x5 john@economyborough.org 建筑检查员 (MDIA),Patrick Duffy 800-922-6342 patrickduffy@mdia.us 劳动所得税 (EIT),Berkheimer 412-881-6630 警察部门 724-869-7877 (非紧急情况) economyboropd.com 局长 O'Brien x11 mobrien@economyboropd.com 警长 Lively x23 clively@economyboropd.com 警长 Farah x26 dfarah@economyboropd.com 警长 Woods x19 jwoods@economyboropd.com 下士 Skonieczny x25 jskonieczny@economyboropd.com 下士 Ferragonio x15 cferragonio@economyboropd.com 高级巡逻员 Janectic x18 mjanectic@economyboropd.com 高级巡逻员 Aschley x27 naschley@economyboropd.com 巡逻员 Mike Truskowski x24 mtruskowski@economyboropd.com 巡逻员 Pollock x28 pollock@economyboropd.com 巡逻员 Amrhein x22 damrhein@economboropd.com 巡逻员 Potts x17 zpotts@economyboropd.com 巡逻员 Duffley x20 pduffley@economyboropd.com 市长 Jo Ann Borato x12 mayor@economyboropd.com 秘书 Kathy Anderson x10 kanderson@economyboropd.com 经济志愿消防部门(非紧急情况) 站 1 724-266-3714 社交大厅 724-266-1116 站 2 724-266-0417 大厅租赁 724-333-0683 站 3 724-869-4381 其他重要联系人(非紧急情况) 经济救护车 724-266-9111 应急管理 724-876-0377 游戏委员会 724-238-9523 物业税,艾米·米勒 724-390-0226 污水管理局 724-869-3201
摘要:对激光熔化过程(例如,对于金属添加剂制造)越来越感兴趣。建模和数值模拟可以帮助理解和控制这些过程中的微观结构演变。然而,微结构模拟的标准方法通常不适合对激光处理中快速固化相关的动力学效应进行建模,尤其是对于包含金属间相的材料系统。在本文中,我们介绍并采用了量身定制的相位场模型来展示此类系统中微观结构演变的独特特征。最初,使用量身定制的相结合模型重新审视了金属层间合理期间异常分配的问题,并针对Ni-Al二进制系统中B2相的现有实验数据评估了模型预测。随后将模型与晶粒生长的POTTS模型结合在一起,以模拟包含金属间相的多晶合金的激光加工。示例用于激光处理富含镍的Ni-AL合金,以证明该方法在研究处理条件对各种微观结构特征的影响时的应用,例如熔体池中金属间相和受热影响区域的金属间相分布。本研究中使用的计算框架设想为在工业相关材料的激光处理中(例如,在基于NI的Superalloys的激光焊接或添加剂制造中)提供了更多了解微观结构的演变。