粉末冶金的潜力只受想象力的限制……作为全球领先的金属粉末生产商,Hoeganaes Corporation 65 年来一直是粉末冶金行业增长的推动力。Hoeganaes 通过不断的技术革新推动了这一增长,扩大了金属粉末在各种应用中的使用范围。Hoeganaes 位于美国的新创新中心拥有世界一流的工程师和科学家,他们开发新产品和新工艺,推动行业发展,涵盖汽车应用和增材制造。在中国霸州开始熔炼和雾化作业后,Hoeganaes Corporation 成为中国大陆第一家国际级黑色金属粉末生产商。Hoeganaes 拥有遍布北美、欧洲和亚洲的生产和混合设施,为全球客户提供最先进的粉末冶金解决方案。
SLM是一个添加剂制造过程,其中金属粉末逐层局部融化,以生成零件以形状或接近净形状。此过程非常适合产生颗粒物增强的MMC,因为它们可以将其体积合并到粉末原料中并在激光熔体下合并,如图2所示。当前,与常规制造的MMC相比,加上制造的MMC的昂贵生产量较低。此外,加上制造的MMC实际上比通过SLM生产的等效金属零件便宜,因为增强件通常比所使用的金属粉末便宜。此外,由于制作零件的层面过程,该添加剂过程可以实现梯度材料制造。每一层可能具有不同的原材料组成。
15:50-16:15(g03-14)微观结构和TIBW增强的钛钛基质组合材料,由电子束粉末床融合技术制备,使用球形钛合金组合粉末作为饲料(被邀请)
摘要:含有硫的固体电解质正在增加研究人员的牵引力,并且每天都在越来越受欢迎。最近,Li 7 P 3 S 11,Li 10 Gep 2 S 12和Li 11 Si 2 PS 12固体电解质在文献中引起了极大的兴趣。这些电解质的离子电导率可以达到高达10 -2 s/cm的值。为此,本研究采用了机械合金方法来合成LI 7 P 3 S 11固体电解质,用于全稳态锂硫电池。为此,将Li 2 S和P 2 S 5成分在某些化学计量比中混合在球磨机中。通过DSC热分析方法确定所获得的粉末的结晶温度,并在适当的结晶温度下在保护氛围下结晶。随后,以对环境条件的高敏感性而闻名的获得的粉末,在专门设计的外壳中进行了XRD和拉曼分析,以防止暴露于开放的大气中。通过电化学阻抗光谱和循环伏安法分析在特殊的固态细胞中对经过结构表征进行电化学测试进行了电化学测试。值得注意的是,环状伏安法分析揭示了一个令人印象深刻的电化学窗口,该窗口延伸至最低5V。此外,在室温下以1.1 mscm⁻的定量Li 7 P 3 S 11颗粒的总电导率,进一步强调了其优惠的电化学性质。结果表现出与现有文献的兼容性,证实了合成的电解质的生存能力,是锂硫硫电池的合适候选者。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。
3. JT. Tsai Ψ、S. Akin、F. Zhou、DF. Bahr、MBG. Jun*,“聚合物基材导电应用上金属粉末冷喷涂沉积的模拟与表征”,ASME 国际制造科学与工程会议,美国俄亥俄州辛辛那提,(2020),(https://doi.org/10.1115/MSEC2020-8461) 2。
图3:a)FTIR光谱显示了PBMA和HDTMS-SIO 2起始物质粉末和膜中的特征振动。XPS数据显示了b)c 1s c)c)c)o 1S光谱和d)c 1s,e)o 1s和f)hdtms-sio 2 /pbma膜的f)si 2p光谱。
散装NB-TA-TI-ZR难治性浓缩合金(RCCA)是通过元素粉末的等准组混合物的定向能量沉积(DED)的加成制造方法制备的。在化学成分的成本和变异性方面,使用元素粉代替预合金粉是有益的。但是,要优化沉积参数更需要。使用扫描速度的变化来研究不同热输入的影响。发现降低的扫描速度有效地减少了微观结构中存在的未溶解的NB/TA颗粒的数量。在沉积过程中采用了预热至500℃的平台,从而在所研究的沉积样品中获得了最佳的微观结构均匀性。最后,进行了1400°C/24 h的均质化退火。尽管对完全TA颗粒溶解的热 - 钙预测,但它们仍然存在于材料中。必须通过优化沉积参数来实现从元素粉末产生的RCCA的合理微结构均匀性,而对于粉末颗粒大小的尺度上的异质性,同质化退火是不可行的。
• Dates (from – to) October 1989 - present • Occupation or position held Researcher (engineer in Materials Science and Engineering, junior researcher (1990-2000), senior researcher (2000 - present) • Main activities and responsibilities - preparation and characterisation of permanent magnets obtained from hard magnetic materials based on rare earths: Sm-Co and NdFeB, processed by sintering, bonding or injection of the powders or as Nd-Fe-B magnetic纳米复合材料 - 基于FE-CU,NI-CR-FE CO-NI-MN-P合金的磁性合金的磁性纳米颗粒•电气工程ICPE-CA Bucharest(前ICPE)(前ICPE),高级材料部的雇主国家研发研究所的名称和地址 and Engineering Faculty • Type of business or sector Education • Dates (from – to) Oct.1986 – Oct. 1989 • Occupation or position held Materials Science and Engineering graduate • Main activities and responsibilities Preparation of stainless steel in electric arc furnaces, steels remolding under slag for AERO and CNE applications • Name and address of employer COS Targoviste, Electrical Steelworks 1 and Unit for Electrical Remolding under Slag • Type of business或钢的部门生产