摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。
1.1.1 小型无人机(“SUA”)在过去几年中在香港和世界各地都越来越受欢迎。SUA的用途范围广泛,从娱乐和STEM教育到专业部署,用于电力线检查、测量、3D测绘、搜索和救援行动、航空摄影和拍摄、无人机表演等。为了把握SUA应用与不断发展的技术和创新的巨大潜力,同时保障航空和公共安全,需要制定一个前瞻性的制度来规范和支持SUA运营。《小型无人机令》(“SUA令”),香港法例第448G章,是根据《民航条例》(第448章)制定的一项附属法例,旨在实现这一目标。《SUA 条例》将于 2022 年 6 月 1 日生效。1.1.2 根据《SUA 条例》,SUA 运营将以风险为本的方式进行监管。根据 SUA 的权重和运营风险水平,不同风险级别的 SUA 运营将受到相应的监管要求。这些要求可能包括 SUA 的注册和标签、遥控飞行员的注册、培训和评估、设备、操作要求和保险。为了在保护公共安全和促进 SUA 发展之间取得平衡,《SUA 条例》已建立灵活性,以适应不同类型的 SUA 运营和 SUA 的快速发展。
太阳能发电场的监控和控制将由现场人员进行,并通过远程控制系统进行,该系统可从提供实时和历史性能信息的场外中央设施访问。维护活动包括所有太阳能发电场、BESS 和电力线以及其他相关基础设施的一般维修和保养。如有必要,清洁太阳能电池板。面板清洁的详细信息将在施工前确认。如果需要,将根据提取许可证的规定在现场取水,或通过当地商业运营取水,并根据需要通过卡车运送到现场。或者,面板可以自行清洁,必要时可使用高压气枪进行干洗。雨水箱将放置在战略位置以用于消防目的,确保为紧急情况做好准备。太阳能支撑结构下方和周围的景观美化、草/杂草管理。现场污水处理系统将连接到控制室,以有效管理废水,确保符合环境和健康法规。现场的电力将由太阳能发电场开发本身提供。此外,控制室可以连接到市电,以确保稳定可靠的电源。夜间照明将很少,可能出于安全目的由运动传感器控制。永久照明将根据《国家野生动物光污染指南》(DCCEEW 2023)进行设计
1.1.1 小型无人机(“SUA”)在过去几年中在香港和世界各地都越来越受欢迎。SUA的用途范围广泛,从娱乐和STEM教育到专业部署,包括电力线检查、测量、3D测绘、搜索和救援行动、航空摄影和拍摄、无人机表演等。为了把握SUA应用与不断发展的技术和创新的巨大潜力,同时保障航空和公共安全,需要制定一个前瞻性的制度来规范和支持SUA运营。《小型无人机令》(“SUA令”),香港法例第448G章,是根据《民航条例》(第448章)制定的附属法例,旨在实现这一目标。《SUA 条例》将于 2022 年 6 月 1 日生效。1.1.2 根据《SUA 条例》,SUA 运营将以风险为本的方式进行监管。根据 SUA 的权重和运营风险水平,不同风险级别的 SUA 运营将受到相应的监管要求。这些要求可能包括 SUA 的注册和标签、遥控飞行员的注册、培训和评估、设备、操作要求和保险。为了在保护公共安全和促进 SUA 发展之间取得平衡,《SUA 条例》已建立灵活性,以适应不同类型的 SUA 运营和 SUA 的快速发展。
1。建议代表批准条件的权力摘要。2。对场地及其周围环境的描述2.1该地点包括绿化带内的1.84公顷农业土地。该地点位于Draycott Cross Road的西侧,毗邻山坡工业区,在Brookhouse工业区对面。公共通行权(Cheadle 18)穿过网站的一小部分。该地点从大约166m AOD(西南角)的高点沿东北方向降落到约1.55亿个AOD(东北角)。高架电力线与连接到德雷科特十字路口的小型电力子站的一条线越过田野。2.2篱笆沿现场正面延伸,沿该边界有两个封闭式的野外接入点。水道和针叶树种植园林地位于西北边界,分配了外部。应用网站构成了更广泛的领域的一部分,该领域将保留在农业中,并且未开发。3。提案的描述3.1拟议的开发是用于电池储能系统(BESS),并具有访问和美化环境。该申请寻求40年的许可,此后将从该站点中删除电池能量存储基础设施。BES将连接到Forsbrook变电站(大量供应点)。3.2电池存储基础设施包括两种单独的化合物:南部化合物 - 场地区域:3,150平方米:
医疗系统中粘合剂的主要应用领域是针结合和注射器组件 - 不锈钢针或插管粘结到玻璃或塑料注射器中。这些针头大量生产,需要大量生产中的快速和可靠的键合。除了其机械键强度外,所使用的粘合剂还必须允许高精度生产和永久连接,并且必须承受各种灭菌方法。Panacol的紫外线治愈的Vitralit®粘合剂完全满足这些要求。vitralit®粘合剂有各种粘度范围,可完全适合针线轮的设计,并填补轮毂和针之间的间隙。轮毂和针的材料也影响粘合剂的选择:许多粘合剂都是紫外线,这需要使用透明和紫外线的材料。对于阻断紫外线(例如聚碳酸酯)的材料,建议使用长波LED可固化的粘合剂。建议用于针头键合的所有Vitralit®粘合剂均为无溶剂和认证的USP IV类和/或ISO 10993用于医疗设备。此外,即使在几个灭菌周期后,也要用所有针键粘合剂测量高针提取力。进行视觉质量检查,还提供了我们的医学级粘合剂的荧光版本。选择粘合剂需要一个匹配的分配系统,以在快速生产环境中可靠,精确地分配。使用BDtronic提供的迷你溶液,无论粘合粘度如何,在微氧范围内的分配都变得容易。随着针线粘合的应用,医疗设备所需的高质量需求证实了Bdtronic的体积分配设备的选择。由于连续的体积分配,分配是无脉冲的,可确保最佳过程速度,可重复性和准确性。最后,紫外线固化设备的选择取决于触发聚合的粘合剂和波长。用于使用Vitralit®产品进行针头键合您可以使用UV-A或可见的LED灯。由于特殊的LED组件和自己优化的电源,HönleLED Powerline LC保证了最快的固化和最短周期时间的高密集型照射。此外,可以在0.01 - 99.99秒的范围内选择辐照时间,因此可以精确地适合过程要求。
为民用遥控飞机系统的使用奠定新的基础 M. Balsi 1,*, S. Prem 2 , K. Williame 3 , D. Teboul 4 , L.Délétraz 5 , P.I. Hebrard Capdeville 6 1 DIET,罗马大学,意大利 - marco.balsi@uniroma1.it 2 Viasat,洛桑,瑞士 - sam.prem@viasat.com 3 Unifly,安特卫普,比利时 - koen.williame@unifly.aero 4 Connectiv-IT,巴黎,法国 - dteboul@connectiv-it.com 5 Skyguide,日内瓦,瑞士 - laurent-deletraz@skyguide.ch 6 M3 Systems,图卢兹,法国 - inti.hebrard@m3systems.eu 关键词:无人机、BVLOS、卫星通信、U-space、UTM、基础设施调查、走廊测绘 摘要:Skyopener 是欧盟通过欧洲 GNSS 机构 (GSA) 在“地平线 2020”计划框架内资助的一个项目。 Skyopener 的目标是通过提供和测试支持技术,特别是参考欧洲倡议 U-Space,为将民用遥控飞机系统 (RPAS) 整合到非隔离空域的路线图做出贡献,旨在建立将无人机整合到共享空域的法规和基础设施。该项目的主要成果包括:实施和测试基于卫星和 3G/4G 网络的可靠、安全的冗余空地通信链路;将任务管理系统和地面站与 UTM(无人机系统交通管理)客户端集成,并试验正在开发的 UTM 服务
摘要:在新生儿重症监护病房 (NICU) 进行长期脑电图监测的挑战在于,在技术经验有限的情况下,如何找到建立和维持足够记录质量的解决方案。本研究评估了皮肤电极接口的不同解决方案,并开发了新生儿一次性脑电图帽。将几种替代皮肤电极接口材料与传统凝胶和糊剂进行了比较:导电纺织品(纹理和编织)、导电尼龙搭扣、海绵、高吸水性水凝胶 (SAH) 和水纤维片 (HF)。比较包括对选定材料的脱水评估和信号质量记录(皮肤相间阻抗和电力线 (50 Hz) 噪声)。测试记录是使用集成在前臂袖子或前额带中的按扣电极以及皮肤电极接口来模拟脑电图帽进行的,目的是在未准备的皮肤上进行长期生物信号记录。在水合测试中,导电纺织品和尼龙搭扣表现不佳。虽然 SAH 和 HF 在模拟孵化器环境中保持充分水合超过 24 小时,但海绵材料在前 12 小时内脱水。此外,SAH 被发现具有脆弱的结构,并且在 12 小时后容易产生电气伪影。在电阻抗和肌肉活动记录比较中,厚层 HF 的结果与未经准备的皮肤上的传统凝胶相当。此外,通过 1-2 Hz 和 1-20 Hz 归一化相对功率谱密度测量的机械不稳定性与使用皮下电极的临床 EEG 记录相当。结果共同表明,皮肤-电极界面处的厚层 HF 是无需准备的长期记录的有效候选者,具有许多优点,例如持久的记录质量、易于使用以及与敏感的婴儿皮肤接触的兼容性。
点云分类在各种机载光检测和测距 (LiDAR) 应用中发挥着重要作用,例如地形测绘、森林监测、电力线检测和道路检测。然而,由于机载 LiDAR 系统的传感器噪声、高冗余、不完整性和复杂性,点云分类具有挑战性。传统点云分类方法大多侧重于开发手工制作的点几何特征,并采用基于机器学习的分类模型进行点分类。近年来,深度学习模型的进步使得研究人员将重点转向基于机器学习的模型,特别是深度神经网络,来对机载 LiDAR 点云进行分类。这些基于学习的方法首先将非结构化的 3D 点集转换为常规的 2D 表示,例如特征图像集合,然后采用 2D CNN 进行点分类。此外,这些方法通常需要计算额外的局部几何特征,如平面度、球度和粗糙度,以利用原始三维空间中的局部结构信息。然而,3D到2D的转换会导致信息丢失。在本文中,我们提出了一种方向约束的全卷积神经网络(D-FCN),它可以将原始三维坐标和激光雷达强度作为输入;因此,它可以直接应用于非结构化三维点云进行sem
表 7-2:已发布的报纸广告 ............................................................................................................................. 47 表 7-3 现场公告位置 ............................................................................................................................................. 48 表 7-4:提供给 IAP 的链接 ............................................................................................................................. 49 表 8-1 植被分类描述 ......................................................................................................................................... 52 表 8-2 草原类型和保护状况 ............................................................................................................................. 54 表 8-3 生态系统状况 ......................................................................................................................................... 54 表 8-4 外来入侵植物 ......................................................................................................................................... 54 表 8-5 研究区域中可能出现的需要保护的物种 ............................................................................................. 57 表 8-6 QDGC 2922CD 内可能发生的鸟类 SCC ............................................................................................. 58表 8-8 考古与遗产调查结果 ...................................................................................................................... 62 表 10-1 影响评价标准 ...................................................................................................................................... 70 表 10-2 持续时间标准描述 ............................................................................................................................. 71 表 10-3 程度标准描述 ............................................................................................................................. 71 表 10-4 强度标准描述 ............................................................................................................................. 71 表 10-5 后果标准描述 ............................................................................................................................. 72 表 10-6 概率标准描述 ............................................................................................................................. 72 表 10-7 置信度标准描述 ............................................................................................................................. 73 表 10-8 可逆性标准描述 ............................................................................................................................. 73 表 10-9 影响评价重要性评级 ................................................................................................................................................ 73 表 10-10 影响意义总结:植被群落退化和破碎化加剧 ...................................................................................................................................... 74 表 10-11 影响意义总结:外来入侵物种的引入和扩散 ...................................................................................................... 75 表 10-12 影响意义总结:动物群落的迁移、丧失和破碎化。 76 表 10-13 影响意义总结:鸟类群落的迁移、损失和破碎化 ...................................................................................................................................... 77 表 10-14 影响意义总结:接收空气质量条件的恶化 ...................................................................................................... 77 表 10-15 影响意义总结:噪音的产生 ...................................................................................................................... 78 表 10-16 影响意义总结:土壤污染和侵蚀 ............................................................................................................. 79 表 10-17 影响意义总结:当地道路上施工车辆交通增加 ............................................................................................. 80 表 10-18 后果标准描述:10.5.2.9 ........ 当地技能转移和可再生能源意识增强 81 表 10-19 影响意义总结:就业机会增加 ............................................................................................................. 82 表 10-21 影响意义总结:考古和/或古生物资源的损坏或破坏 ...................................................................................................................................................................... 82 表 10-22 影响意义总结:由于废物的管理和处理不当导致接收环境受到污染 ............................................................................................................................................. 83 表 10-23 影响意义总结:由于 BESS 故障导致本土植被的损失和流离失所 ............................................................................................................................................. 84 表 10-24 影响意义总结:由于 BESS 故障导致动物群和鸟类群落的损失和分裂 ............................................................................................................................. 86 表 10-25 影响意义总结:由于 BESS 故障导致周边社区和居民的健康状况下降 ........................................................................................................................................................................................................................ 87 表 10-26 影响意义总结:电线碰撞、触电和对鸟类群落的干扰 ............................................................................................................................................. 88 表 10-27 影响意义总结:危险化学品泄漏对土壤和地下水资源的污染 ............................................................................................................................. 88 表 10-28 影响意义总结:提高能源服务的可靠性和电网加强 ............................................................................................. 90 表 10-29 影响意义总结:由于安装 BESS 而导致的视觉美感变化 ............................................................................. 90 表 10-30 影响意义总结:本土植被的干扰和动物群落的迁移 ............................................................................. 91 表 10-31:意义总结:对减少气候变化的贡献 ............................................................................................. 91 表 10-32:意义总结:提高整个 Eskom 电网的能源效率 ............................................................................. 92 表 10-33 影响总结表:施工阶段:最坏情况评估 ................................................................................ 93 表 10-34 影响汇总表:运营阶段:最坏情况评估 ........................................................ 93 表 10-35 影响汇总表:累积影响:最坏情况评估 ........................................................ 9493 表 10-34 影响汇总表:运营阶段:最坏情况评估 .............................................................. 93 表 10-35 影响汇总表:累积影响:最坏情况评估 .............................................................. 9493 表 10-34 影响汇总表:运营阶段:最坏情况评估 .............................................................. 93 表 10-35 影响汇总表:累积影响:最坏情况评估 .............................................................. 94