我实验室中的研究广泛地集中在理解心脏代谢疾病中动脉粥样硬化风险的病理基础上。在这方面,我们一直在研究NLRP3炎性体信号在髓样细胞中的作用,特别是中性粒细胞和巨噬细胞。我们已经确定了某些激活NLRP3炎性体的嗜中性粒细胞衍生的警报分子(即S100A8/A9),并促进促炎细胞因子的释放。这些细胞因子传播到骨髓,与骨髓(BM)中的不同造血茎和祖细胞(HSPC)相互作用,以刺激异常的脊髓脉和血栓形成,从而增加了动脉粥样硬化的风险。因此,我们的重点主要是确定与BM中与HSPC相互作用的炎症提示/信号传导介质以促进全身炎症。我们的短期目标是验证和重新利用某些FDA批准的药物以靶向急性和慢性炎症,以改善心脏代谢结果。长期目标是利用我们的研究和其他人的知识来制定新颖的治疗策略,以减轻心血管和心脏代谢性疾病的整体负担。奖项/荣誉: div>
ISSN:2454-3055人为对物种多样性的影响和来自沿海地区的鸟类的物种多样性和分布的分布410206,印度 *收到的通讯作者:2020年6月7日接受:2020年7月2日在线发布:2020年7月6日https://doi.org/10.33745/ijzi.2020.v06i02.005自然资源的过度开发和森林砍伐对纳维孟买Panvel的多样性和分布的森林砍伐。在黎明和黄昏时期通过在不同地区使用点数法(从2019年6月到2020年5月)对鸟类进行了调查。观察到102种代表16个阶,48个家庭和84属的鸟类多样性。每个家族中分布的鸟类数量表明,有45种属于家族的passeriformes,12种属于Charadriiformes,10种属于骨质的物种,占中质物种,有8种属于Accipitriformes,有7种,coraciiformes,每个物种属于Coracioformes,每种物种属于Columbiformes,Piciformes,Piciformes和Strigiformes; 2 species each to Anseriformes, Bucerotiformes and Gruiformes and 1 species each to Cuculiformes, Galliformes, Phoenicopteriformes, Psittaciformes and Suliformes.由于鸟类群落对人为影响的影响迅速,因此建议恢复大型森林斑块和计划良好的保护厂种植园。目前,由于持续建设了新孟买国际机场(NMIA)的建设,纳维孟买毗邻的地区的生态状况支持温和的鸟类密度,但对自然资源和森林砍伐过度剥夺是影响鸟类物种多样性和分布的关键因素。由于没有较早的报告,因此可以将此处提供的数据作为基线数据,以了解Panvel,Navi Mumbai的鸟类状态以及工业发展对其的影响。
关于 2013 年《公司法》;关于第 230 至 232 条(与 2013 年《公司法》其他相关条款一并阅读);关于 Deep Energy Resources Limited ;关于 Savla Oil and Gas Private Limited ;关于 Prabha Energy Private Limited ;关于 Deep Energy Resources Limited 与 Savla Oil and Gas Private Limited 和 Prabha Energy Private Limited 及其各自股东和债权人之间的综合安排计划;Deep Energy Resources Limited ,一家根据 1956 年《公司法》规定成立的公司,现视为根据 2013 年《公司法》成立,其注册办事处位于 12A & 14, Abhishree Corporate Park, Ambli Bopal Road, Ambli, } Ahmedabad - 380058, Gujarat, India。}
博士阿拉伯联合酋长国利瓦学院的Shaista Anwar博士Prabha Kiran,Westminster International University,Tashkent先生贾恩·普拉布·托马斯(Jain Prabhu Thomas),教育部,马尔代夫博士印度德里梅里学院的Gurpreet Kaur Chhabra
摘要癌症因其可怕的可怕和现有疗法的有害后果而面临挑战。这是仅次于缺血性心脏病的第二个常见的非传染性疾病。广泛的研究导致了几种创新的愈合方式和数百种癌症治疗。手术切除是最有成熟且经过良好测试的治疗选择。辐射治疗成功地管理了广泛的恶性肿瘤,用于治疗所有癌症患者的一半。癌症是全球死亡率最普遍的原因。到2020年,它已导致大约1000万人死亡,每六人中几乎占死亡。乳房,肺,结肠和直肠前列腺癌是最普遍的。各种研究表明,尽管癌症疗法的进步,但根据阶段和疾病的种类,癌症患者的需求仍然各种。癌症患者未满足的要求与症状不适,焦虑和生活质量较低有关。几项研究表明,癌症患者寻求补充和替代药物(CAM)来满足这些未满足的需求。在印度,阿育吠陀是患者采用的最常使用的替代疗法。我们以前的研究论文。几个案例研究表明,基于Rashadis的Rasayana治疗程序具有增强癌症患者治疗结果的较高潜力。在本文中,我们讨论了Rasayana治疗癌的治疗用途。Rasayana有助于补充和增强Dhatus和Ojas。Rasayana疗法的主要优点是Deerghayu,Smriti,Medha,Arogyam,Tarunam Vaya,Prabha,Prabha,Varna,Swarodarya,Indriya Balam,Vaksidhi,Pranati,Pranati和Kanti。
此次评选活动的尊贵评审团包括 Ashok Leyland Limited PP2 副总经理 A. Aravind 博士、Trimble 首席研发工程师 Lakshmanan 博士、首席站点可靠性工程师和 API 开发人员 Vishnu Prasad AD 先生、现代农业技术创新中心 (MATIC) 创始人 Shanmugakumar Murugesan 博士、Celestica 总监 Murugappan Krishnan 先生、副总裁兼集团垂直主管 Suresh Kayamboo 先生、雷诺日产印度技术与业务中心高级分会负责人 Padma Prabha 女士、Brakes India SGM-AMTIX 总经理 Kumaravel 先生以及 Turbo Energy Limited 质量副总经理 Kartheeban 先生。
让我们想象一台量子计算机。其目的是利用典型的量子力学效应(即叠加或纠缠)对量子信息执行操作。如果我们对量子信息进行操作,我们就无法防止量子信息受到某种量子噪声(如退相干)的影响。因此,我们希望实现一种对量子噪声具有鲁棒性的量子计算。此时,量子纠错领域应运而生。本学士论文的目的是给出一种通过转置信道近似量子纠错条件的方法,作为一般恢复操作。在了解一些数学基础知识之后,我们从量子纠错的基本概念开始,并给出一个量子码的例子,称为 Shor 码,它可以抵抗单量子比特错误。然后,我们直接继续介绍量子纠错条件,这为我们提供了一个强大的工具来检查量子码是否满足我们的特定需求。在介绍转置信道作为一般校正操作之后,我们展示了这种特定操作可用于将完美量子误差条件推广到包括近似校正代码。具体来说,它将产生本学士论文的主要结果,即近似量子误差校正条件(AQEC 条件 - 由 Ng 和 Mandayam 首次提出)。此外,我们将介绍此条件的推广,用于非跟踪保留错误。有了这些工具,我们将以近似校正代码的特定示例 π-cat 状态代码结束我们的旅程。我们在近似量子误差校正方面的旅程地图将主要来自加州理工学院量子信息研究所 Hui Khoon Ng 和 Prabha Mandayam 于 2009 年 9 月 4 日提交的论文《近似量子误差校正的简单方法》。
