摘要:目前,没有标准化的框架或指标来评估区域气候模型沉淀输出。因此,很难比较区域或研究之间的表现,或者与分辨率分辨率的全球气候模型进行比较。为了解决这个问题,我们介绍了建立动态但标准化的基准测试框架的第一个步骤,该框架可用于评估模型技能,以模拟降雨的各种特征。基准测试与典型的模型评估不同,因为它要求先验设定绩效期望。该框架在科学研究的基础上具有无数的应用,该研究通过提供结构化方法来评估模型发展的优先级,并提供援助利益相关者的决策,以识别用于气候风险评估和适应策略的方法模型模型模型。虽然该框架可以应用于任何空间域的区域气候模型模拟,但我们使用高分辨率(0.5 8 3 0.5 8 cordex-Australasia Ensemble中的仿真)证明了其对澳大利亚的有效性。我们提供建议根据框架的应用选择指标和实用基准标准阈值。这包括最低标准指标的顶级层,以建立正在进行的气候模型评估的最低基准标准。我们使用从潜在用户社区收到的反馈来介绍该框架的多个应用程序,并鼓励科学和用户社区通过量身定制基准并在其应用程序中提出其他指标,以基于此框架进行构建。
最近,深度学习(DL)技术的指数增长,这是一种数据驱动的方法,在气象和气候预测和预测中已被证明是成功的(例如Bi等,2022; Ham等,2019; Liu et al。与NWP相比,DL模型没有明确包含大气动力学,这可能会影响其性能和应用前景(Reichstein等,2019)。值得注意的是,DL模型可能会在严重降雨事件的预测中遇到困难。有条件生成模型的使用是改善大降雨预测的有效方法,尤其是在现象中(Hess等,2022; Ravuri等,2021; Zhang等,2023)。此外,DL模型可能不符合重要的物理耦合(Han等,2020)和阻碍沉淀的预测。在这种情况下,物理先验告知的DL模型可能证明是有益的(Karniadakis等,2021; Kashinath等,2021)。
北美天气顾问(NAWC)在1989年的2月和4月(1989年北美天气顾问)在羽毛河流域的北部进行了云种子播种操作,以及Pit River River和McCloud River Patersheds的一部分。NAWC在2010年和2011年(2011年北美天气顾问)在国王河流域进行了云种子作业。该报告表明云种子的影响在 +1.5%至+8.8%之间。相应的好处:估计3:1至10:1的成本比率。1992年,加利福尼亚州水资源部(DWR)评估了羽毛河盆地的新水的平均价值约为每英亩30美元(Reinking等人1995)。1992年的干旱水库每英亩$ 50为
摘要:光流技术具有运动跟踪的优势,并且长期以来一直在降水中使用,用于使用接地雷达数据集跟踪降水场运动。但是,基于光流的模型的性能和预测时间尺度受到限制。在这里,我们介绍了将深度学习方法应用于光流量估计的结果,以扩展其预测时间尺度并增强现象的性能。表明,深度学习模型可以更好地捕获降水事件的多空间和多阶段运动,该模型与传统的光流估计方法相对。该模型包括两个组成部分:1)基于多个光流算法的回归过程,该过程更准确地捕获了与单个操作流量算法相比的多空间特征; 2)一个基于U-NET的网络,该网络训练降水运动的多个临时特征。我们通过韩国的降水案例评估了模型性能。尤其是,回归过程通过将多个光流算法与梯度下降方法相结合,从而最大程度地降低了错误,并且仅使用单个光流算法的其他模型胜过其他模型,直到3小时提前时间。此外,U-NET在捕获非线性运动中起着至关重要的作用,而非线性运动无法通过传统的光流估计来捕获简单的对流模型。因此,我们建议使用深度学习的拟议的光流估计方法在改善基于传统的光学流量方法的当前操作现象模型的性能中起着重要作用。
摘要:降水对土地的预测对于社会经济风险评估至关重要,但是模型差异限制了其应用。在这里,我们使用一种模式过滤技术来识别多模型合奏的各个成员的低频变化,以评估投影模式和变化幅度的模型之间的差异。特别是,我们将低频组件分析(LFCA)应用于21 CMIP-6模型中每日降水极端的强度和频率。LFCA在预计变化的空间模式下,在模型之间的一致性中带来了适度但统计学上的显着改进,尤其是在温室强迫较弱的情况下。此外,我们表明LFCA促进了对降水极端量表随着单个合奏成员内的全球温度变化而增加降水量量表的强劲识别。尽管这些速率大致与Clausius-Clapeyron关系的期望平均匹配,但各个模型都会表现出很大且显着的差异。蒙特卡洛模拟表明,这些差异至少与气候敏感性的差异一样多,导致投影变化的不确定性。最后,我们将这些缩放率与观察产品鉴定的缩放率进行了比较,这表明几乎所有气候模型都显着低估了降水量增加的速度,而降水量增加的速度已随着历史上的全球温度而扩展。用观测值的约束投影扩大了降水极端的预测强度,并减少了其分布的相对误差。
摘要。量化气候变化如何驱动21世纪的干旱是为摩洛哥提供政策和适应计划的优先事项。SPEI干旱指数是根据12个月时间尺度的降水和温度计算得出的,涵盖了9月 - 8月的农业年度,对五个模型进行了2023 - 2019年的五个模型。通过比较SPEI值的平均值和干旱区百分比(光,中度,中度和极端)来获得摩洛哥之间的平均变化。另外,通过比较不同的11年时间范围的干旱特征2023-2033、2034-2044、2045-2055、2056-2066、2067-2077、2078-2077、2078-2088和2089-2099。基于CMIP6模型的SSP2-4.5场景对未来干旱预测的研究表明,摩洛哥在本世纪下半叶的干旱恶化。中度干旱预计将占主导地位,该地区受干旱影响急剧增加,甚至在六年内达到90%。这些结果对于水资源管理中的决策者至关重要,强调需要采取策略来减轻干旱的不利影响,包括有效利用水资源。
摘要:澳大利亚R/V调查员的最新航行在整个偏远的南大洋中提供了前所未有的降水观察结果,该降水量既是海洋降雨和冰相降水测量网络(OceanRain)海上圆点和双极化C波段C-Band C-Band Cane Radar(Oceanpol)。本研究采用这些观察结果来评估GPM(IMERG)的全球降水测量(GPM)综合多卫星检索和ECMWF(ERA5)降水产物产生的第五次重大全球重新分析。以60分钟和0.25 8(; 25 km)的分辨率工作,在整个过程中最常观察到小雨和毛毛雨。对海洋评估时,imerg产物高估了降水强度,但捕获了出现频率。从天气/过程量表中,发现IMERG在暖额和高纬度气旋条件下是最不准确(高估的强度),通常会预先发送多层云。在临时条件下,imerg低估了降水频率。相比之下,ERA5的技能在各种综合条件下更加一致,除了高压频率(强度)高度高估(低估)的高压条件。使用Oceanpol Radar,这是一个面积到区域分析(分数技能得分),发现ERA5的技能比Imerg更高。在海洋径流计,iMerg和ERA5之间的阶段分类中几乎没有共识。比较因不同数据集中的相分类的各种假设而变得复杂。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
1气象与气候研究所(IMK-TRO),Karlsruhe理工学院(KIT),Karlsruhe,德国2 Potsdam大学,Karl-Liebknecht-Str。24-25,14476德国波茨坦3德累斯顿技术大学,水文与气象学院,皮恩纳·斯特劳斯(PiennerStraße),23,01737德国塔兰特(Tharandt)4 4莱比锡大学气象学研究所德国6汉堡大学,气象学院,格林德伯格5,20144汉堡,德国7德国气象局,法兰克福斯特拉松135,63067 Offenbach AM MAIN 8部分,GFZ德国德国研究中心,德国地球科学研究中心,Telegrafenberg,Telegrafenberg,Telegrafenberg,144773 Potsdam,Dermane 45 blimechenem blimechenem, 20146 Hamburg, Germany 10 Center for Disaster Management and Risk Reduction Technology (Cedim), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 11 Institute of Physics and Meteorology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany Weather Service, Regionales Klimabüro Potsdam, Güterfelder DAMM 87-91 14532 Stahnsdorf,德国13 Bodenk Scientifififififififififififififififififififififififififififififififi,Alexandra 9391,新西兰
1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000 (1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 美国能源部 (DOE) 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学和技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/