近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
在陆地机器人自主导航的背景下,创建用于代理动力学和感官的现实模型是机器人文献和商业应用中的广泛习惯,在该习惯中,它们用于基于模型的控制和/或用于本地化和映射。另一方面,较新的AI文献是在模拟器或Ai-thor的模拟器或端到端代理上进行训练的,在这种模拟器中,重点放在照相现实渲染和场景多样性上,但是高效率机器人动作具有较少的特权角色。所得的SIM2REAL差距显着影响训练有素的模型转移到真正的机器人平台。在这项工作中,我们探讨了在设置中对代理的端到端培训,从而最大程度地减少了Sim2real Gap,在感应和驱动中。我们的代理直接预测(离散的)速度命令,这些命令是通过真实机器人中的闭环控制维护的。在修改的栖息地模拟器中鉴定并模拟了真实机器人的行为(包括底盘的低级控制器)。探视和定位的噪声模型进一步促进了降低SIM2REAL间隙。我们在实际导航方案上评估,探索不同的本地化和点目标计算方法,并报告与先前的工作相比的性能和鲁棒性的显着增长。
作为一种新的编程范式,基于神经网络的机器学习已将其应用扩展到许多现实世界中的问题。由于神经网络的黑盒性质,验证和解释其行为变得越来越重要,尤其是当它们部署在安全至关重要的应用中时。现有的验证工作主要集中于定性验证,该验证询问是否存在针对神经网络的输入(指定区域),以便违反财产(例如,局部鲁棒性)。但是,在许多实际应用中,几乎可以肯定存在这样的(对抗性)输入,这使得定性答案降低了有意义。在这项工作中,我们研究了一个更有趣,更具挑战性的问题,即对神经网络的定量验证,该验证询问财产经常得到满足或侵犯财产的频率。我们针对二进制神经网络(BNNS),一般神经网络的1位量化。BNN最近在深度学习中引起了越来越多的关注,因为它们可以大幅度地减少记忆存储和执行时间,而智力操作在求助方案中至关重要,例如,嵌入式设备用于物联网的嵌入式设备。朝着对BNNS的定量验证,我们提出了一种新型算法方法,用于将BNN作为二进制决策图(BDDS),这是一种在形式验证和知识表示中广泛研究的模型。通过利用BNN的内部结构,我们的编码将BNN中块的输入输出关系转化为基数约束,然后由BDD编码。基于新的BDD编码,我们为BNN开发了一个定量验证框架,可以在其中对BNN进行精确和全面的分析。为了提高BDD编码的可扩展性,我们还研究了各个级别的并行化策略。我们通过为BNN提供定量鲁棒性验证和解释性来证明我们的框架的应用。广泛的实验评估证实了我们方法的有效性和效率。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2021年7月26日发布。 https://doi.org/10.1101/2021.07.26.453883 doi:biorxiv preprint
摘要 虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍然缺乏高效产生精确点突变的有效方法。在这里,我们展示了碱基编辑器可以高效地产生 C 到 T 的点突变,而不会产生其他不必要的靶向突变。此外,我们建立了一种识别 NAA 原型间隔区相邻基序的新编辑器变体,扩展了斑马鱼的碱基编辑可能性。利用这些方法,我们首先在 ctnnb1 基因中产生了碱基变化,模仿已知会导致内源性 Wnt 信号组成性激活的人类基因致癌突变。此外,我们精确靶向了包括 cbl 在内的几种癌症相关基因。利用最后一个目标,我们创建了一种新的斑马鱼侏儒症模型。我们的研究结果共同扩展了斑马鱼作为模型系统的潜力,为内源性调节细胞信号通路和生成人类遗传疾病相关突变的精确模型提供了新方法。
Cellbricks GmbH在Cellbricks Therapeutics上,我们致力于对数百万处理损害器官功能的患者的生活产生重大影响。我们通过创新的生物打印组织疗法的创新生产来实现这一目标,从而通过恢复或支撑器官功能为人类提供更长和更健康的寿命。Cellbricks Therapeutics是一家生物技术公司,结合了合成生物学和3D-Bioprinting的世界领先专业知识。利用我们的专有生物制造技术和组织工程水平,我们正在大规模复制人体组织,以便研究人员和医生可以为患者提供更好的临床治疗。我们迅速成长的多学科团队由生物技术爱好者,科学家,博士学位,工程师,化学家和企业家组成,来自优秀的大学以及来自世界各地的顶级公司。我们的实验室和办公室位于欧洲启动首都柏林。
自动驾驶汽车由于技术进步及其改变转移的潜力而引起了极大的关注。该领域中的一个关键挑战是精确的定位,尤其是在基于激光雷达的地图匹配中,由于数据中的退化,这很容易出现错误。大多数传感器融合技术,例如卡尔曼过滤器,都依赖于每个传感器的准确误差协方差估计来提高定位精度。但是,获得地图匹配的可靠协方差值仍然是一项复杂的任务。为了应对这一挑战,我们提出了一个基于神经网络的框架,用于预测LIDAR地图匹配中的本地化错误协方差。为了实现这一目标,我们引入了一种专门设计用于错误协方差估计的新型数据集生成方法。在使用Kalman滤波器的评估中,我们实现了2 cm的定位准确性,这是该域的显着增强。
摘要 - 本研究提出了一个强大的脑肿瘤分类框架,首先是对 233 名患者的细致数据整理。该数据集包含各种 T1 加权对比增强图像,涵盖脑膜瘤、神经胶质瘤和垂体瘤类型。采用严格的组织、预处理和增强技术来优化模型训练。所提出的自适应模型采用了一种尖端算法,利用了自适应对比度限制直方图均衡化 (CLAHE) 和自适应空间注意。CLAHE 通过根据每个区域的独特特征调整对比度来增强灰度图像。通过注意层实现的自适应空间注意动态地为空间位置分配权重,从而增强对关键大脑区域的敏感性。该模型架构集成了迁移学习模型,包括 DenseNet169、DenseNet201、ResNet152 和 InceptionResNetV2,从而提高了其稳健性。 DenseNet169 充当特征提取器,通过预训练权重捕获分层特征。批量归一化、dropout、层归一化和自适应学习率策略等组件进一步丰富了模型的适应性,减轻了过度拟合并在训练期间动态调整学习率。技术细节(包括使用 Adam 优化器和 softmax 激活函数)强调了模型的优化和多类分类能力。所提出的模型融合了迁移学习和自适应机制,成为医学成像中脑肿瘤检测和分类的有力工具。它对脑肿瘤图像的细致理解,通过自适应注意力机制的促进,使其成为神经成像计算机辅助诊断的一项有希望的进步。该模型利用具有自适应机制的 DenseNet201,超越了以前的方法,实现了 94.85% 的准确率、95.16% 的精确率和 94.60% 的召回率,展示了其在具有挑战性的医学图像分析领域提高准确率和泛化的潜力。关键词:NeuroInsight、脑肿瘤分类、医学影像、自适应深度学习、自适应框架。1. 简介通过整合最先进的技术,特别是在深度学习领域,医学诊断领域经历了前所未有的进步。这一进步的一个显著例子是使用自适应深度学习进行脑肿瘤分期分类,这是一种新颖的方法,它不仅利用了深度学习的能力,而且还能动态适应脑肿瘤分期固有的复杂性,在诊断中呈现出更高的精确度和个性化水平。在医疗保健领域,脑肿瘤因其表现形式多样、严重程度各异而成为一项艰巨的挑战。传统的肿瘤分类方法经常难以准确描述肿瘤分期的细微细节。在此背景下引入自适应深度学习标志着一种范式转变,它赋予诊断过程一种自学习机制,该机制会随着遇到的每个数据集不断发展和完善自身[1] – [4]。这种开创性方法的基础要素是一种先进的深度学习算法,其特点是动态和自适应性。自适应深度学习方法与典型的深度学习模型不同,它不断修改其参数以响应输入数据的独特特征,而不是依赖于固定的、预定的架构。这种自适应能力确保了对与脑肿瘤分期相关的复杂性的更细致入微和针对具体情况的理解[5] – [7]。
准确鉴定植物物种对于各种应用至关重要,包括生态研究,农业和保护工作。统计数据表明,错误识别可能导致生物多样性管理和农业生产力的重大问题。传统的识别方法在很大程度上依赖于专家知识和手动比较,这可能是耗时的,并且容易出现不准确。手动识别植物物种通常需要广泛的植物知识和经验。此过程可能会很慢,并且会遭受人为错误,从而导致错误分类和结果不一致。手动方法无法扩展,尤其是在处理大型数据集或进行广泛的生物多样性评估时。此外,对视觉检查和比较的依赖限制了处理和对大量数据进行有效分类的能力。我们提出的解决方案利用机器学习算法根据叶子图像对植物物种进行分类。通过训练机学习(ML)模型在来自四个植物物种(Arjuna,Guvva,Chinar,Jatropha)的叶片图像数据集上,我们旨在开发一个可靠的分类系统。ML方法涉及特征提取,实现准确和自动化的物种识别。这种方法有望提高植物物种分类的效率和可靠性,并支持植物学,农业和环境管理中的各种应用。