国家成人虐待报告系统 (NAMRS) 和成人保护服务技术援助资源中心 (APS TARC) 是美国卫生与公众服务部社区生活管理局、老龄管理局的一个项目,由 WRMA, Inc. 管理。承包商的调查结果、结论和观点不一定代表美国卫生与公众服务部社区生活管理局、老龄管理局的官方政策。
Abe Woo 1,Alessandro Gibertin 2,Joseph Ansong 3,Loreta Cornacchia 4 1-加纳大学海洋和沿海研究中心,加纳大学3-加纳大学4-荷兰大学星期四 - 荷兰大学 - 荷兰分区 - 所有时间都是当地时代(UTC+1))Abe Woo 1,Alessandro Gibertin 2,Joseph Ansong 3,Loreta Cornacchia 4 1-加纳大学海洋和沿海研究中心,加纳大学3-加纳大学4-荷兰大学星期四 - 荷兰大学 - 荷兰分区 - 所有时间都是当地时代(UTC+1)
1 弗莱堡大学医学中心骨科和创伤外科系,弗莱堡大学医学院,弗莱堡 79108,德国;sara.uelkuemen@hotmail.de(S.Ü.);pm.obid@gmail.com(PO);gernotmichaellang@gmail.com(GML)2 洛雷托医院脊柱外科系,弗莱堡 79100,德国;frank.hassel@rkk-klinikum.de(FH);alisia.zink@gmail.com(AZ)3 帕拉塞尔苏斯医科大学实验神经再生研究所、脊髓损伤和组织再生中心萨尔茨堡(SCI-TReCS),奥地利 5020 萨尔茨堡; s.couillard-despres@pmu.ac.at 4 海德堡大学医院口腔颌面外科系,69120 海德堡,德国;veronika.shavlokhova@med.uni-heidelberg.de 5 奥地利组织再生集群,1200 维也纳,奥地利 6 医学情报与信息学,慕尼黑工业大学医学院 Rechts der Isar 医学中心,81675 慕尼黑,德国;martin.boeker@tum.de * 通信地址:babak.saravi@jupiter.uni-freiburg.de
随着当前网络平台用于在线电子商务的快速开发,除了透明的价格竞争外,买方的反馈也对消费者的购买决策也有合理的影响。今天,我们可以看到,近年来,消费者在相关网站上的反馈行为,包括著名的在线购物平台,例如亚马逊购物,Shopee Shopping和Toobao,近年来逐渐得到了增强。消费者反馈的实质性建议是否有助于其他肤浅的消费者阅读他们以改善购物习惯。在这项研究中,我们使用机器学习自动对反馈注释进行分类,并监视购物交易量的增长趋势,从而选择Shopee购物平台作为实验案例。根据评论提供的客户提供的建议已融入情感单词管理分析中,并且单词和单词分数得到了加权。最后,建造了商店销售引擎,该引擎模拟消费者的行为,使用审核管理过滤可变因素,并优化了预测消费者购物的指标。
尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
在世界范围内,警察部门使用犯罪预测软件来预先预测并防止未来的罪行。预测性警务只是安全当局以及特殊的执法机构努力通过通过社会技术手段产生与未来相关的知识来使未来易于管理的众多方式之一。在进行预测性警务时,警察部门不仅会产生对未来的预期见解,而且会积极地塑造目前的介入。在本章中,我们将预测性警务分析为生产和塑造与犯罪相关的未来的社会技术过程。更确切地说,我们将预分法的警务分析为“翻译链”(Latour,1999:70)。这样做,我们追踪了犯罪预测的产生,从算法编程和数据输入到警察执行的数据:涉及许多认知翻译的过程 - 在不同的位置,但通常会及时接近。我们将预测性警务描述为一个由不同阶段组成的增量过程,专门针对基于德国的基于地方的犯罪预测软件。将这一过程作为“翻译链”,我们显示了一个较大的(认知)差距,该差距在预测过程的开始及其结束之间出现。在一个或多或少的无缝过程中,这一差距是由人类和非人类填补的,从相应警察总部的犯罪分析部门开始,并在预测的风险区域的街道上结束。我们收集了从11个警察部门,其中4个位于瑞士和7个在德国的定性数据。将预测性警务视为一系列翻译,使我们能够将其分析为一种富有成效的社会技术过程,该过程有时会以非线性方式进行。本章借鉴了一个有关我们在2017年至2018年间在德国和瑞士进行的犯罪预测软件实施和使用的研究项目。在数据收集时,所有部门都已经定期使用预测性警务工具,运行现场实验以确定是否使用和/或如何最好地实施此类工具,或者开发自己的工具。总共对警察主持人进行了62次半结构化访谈。这些官员从事各种角色,包括后台工作,
摘要:我们假设考虑合并症,P波和超声心动图测量的可解释的换档机(GBM)模型,可以更好地预测二尖瓣反理中的死亡率和脑血管事件(MR)。分析了三级中心的患者。GBM模型被用作可解释的统计方法,以识别具有CVA和全因死亡率结果的高危患者的主要指标。总共包括706名患者。GBM分析表明,年龄,收缩压,舒张压,血浆白蛋白水平,平均p波持续时间(PWD),MR反理体积,左心室射血分数(LVEF),剩余的心房限制,预测末端 - 类固有(LADS),VELOCITY PITY ENTIMAL(VELOCITY CONTIN)和有效的commigi andi andi andi ofi andi andi andi ofi andi ori ori ofi ofii ofii na
