1 弗莱堡大学医学中心骨科和创伤外科系,弗莱堡大学医学院,弗莱堡 79108,德国;sara.uelkuemen@hotmail.de(S.Ü.);pm.obid@gmail.com(PO);gernotmichaellang@gmail.com(GML)2 洛雷托医院脊柱外科系,弗莱堡 79100,德国;frank.hassel@rkk-klinikum.de(FH);alisia.zink@gmail.com(AZ)3 帕拉塞尔苏斯医科大学实验神经再生研究所、脊髓损伤和组织再生中心萨尔茨堡(SCI-TReCS),奥地利 5020 萨尔茨堡; s.couillard-despres@pmu.ac.at 4 海德堡大学医院口腔颌面外科系,69120 海德堡,德国;veronika.shavlokhova@med.uni-heidelberg.de 5 奥地利组织再生集群,1200 维也纳,奥地利 6 医学情报与信息学,慕尼黑工业大学医学院 Rechts der Isar 医学中心,81675 慕尼黑,德国;martin.boeker@tum.de * 通信地址:babak.saravi@jupiter.uni-freiburg.de
摘要:我们假设考虑合并症,P波和超声心动图测量的可解释的换档机(GBM)模型,可以更好地预测二尖瓣反理中的死亡率和脑血管事件(MR)。分析了三级中心的患者。GBM模型被用作可解释的统计方法,以识别具有CVA和全因死亡率结果的高危患者的主要指标。总共包括706名患者。GBM分析表明,年龄,收缩压,舒张压,血浆白蛋白水平,平均p波持续时间(PWD),MR反理体积,左心室射血分数(LVEF),剩余的心房限制,预测末端 - 类固有(LADS),VELOCITY PITY ENTIMAL(VELOCITY CONTIN)和有效的commigi andi andi andi ofi andi andi andi ofi andi ori ori ofi ofii ofii na
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
临床前扰动筛选,其中在疾病模型上系统地测试了遗传,化学或环境扰动的影响,由于其规模和因果性质,对机器学习增强的药物发现具有巨大的希望。预测模型可以根据分子特征来推断以前未经测试的疾病模型的扰动反应。这些在计算机标签中可以扩展数据库并指导实验优先级。但是,对扰动特异性效应进行建模并在各种生物环境中产生健壮的预测性能仍然难以捉摸。我们介绍了LEAP(自动编码器和预测变量的分层集合),这是一个新颖的集合框架,可改善稳健性和概括。LEAP利用多个Damae(数据增强蒙版的自动编码器)表示和套索回归器。通过结合从不同随机初始化中学到的多种基因表达表示模型,在预测未见细胞系,组织和疾病模型中基因本质或药物反应方面始终胜过最先进的方法。值得注意的是,我们的结果表明,结合表示模型而不是仅预测模型会产生出色的预测性能。超出其性能增长,LEAP在计算上是有效的,需要最小的高参数调整,因此很容易将其纳入药物发现管道中,以优先考虑有希望的目标并支持生物标志物驱动的分层。这项工作中使用的代码和数据集可公开使用。
近来,使用机器学习模型和技术预测经济变量的情况越来越多,其动机是它们比线性模型具有更好的性能。尽管线性模型具有相当大的解释能力的优势,但近年来,人们加大了努力,使机器学习模型更具解释性。本文进行了测试,以确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型具有更好的性能。本文还探讨了机器学习模型检测到的最重要的这种规模的决定因素是否与文献中基于传统线性模型检测到的因素相同。为此,从 2004 年到 2014 年,收集并处理了 122 个国家的观测数据。接下来,使用 11 个模型(四个线性模型和七个基于机器学习算法的模型)来预测这些国家非正规经济的规模。使用 Shapley 值计算了预测变量在确定机器学习算法产生的结果中的相对重要性。结果表明:(i)基于机器学习算法的模型比线性模型具有更好的预测性能;(ii)通过 Shapley 值检测到的主要决定因素与文献中使用传统线性模型检测到的主要决定因素一致。
基于Leith(1964),Mintz(1965)和Smagorinsky(1963)的数值实验,确定大气的确定性可预测性极限被确定为大约2周。
世纪,在量子级别上开发有效的工具是相当多的,以提高数据的确定性和互操作性。量子计算机以量子力学为基本的原理,即使我们正处于开发的开始,仍然有望带来惊喜。Quantum计算机是唯一可以实现指数加速经典compoter的计算模型。量子计算机当前面临的主要挑战包括增加或减少给定系统的量子数量,同时管理以保留量置的属性和量子系统的纠缠状态,以通过适当的量子算法执行数据操作。在本文中,我们将概述量子计算机,将描述加密的演变以及与量子计算机的计算性能,效率和预测性建模有关的理论。原型和量子模拟算法将提出改善新量子宇宙的寿命。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
由于开发新化合物并确定其性能是昂贵且可能危险的,因此有必要开发一个模型来预测分子特性,而无需合成和实验测试。表示化合物的两种系统方法是通过分子结构的示意图和简化的分子输入线 - 进入系统(Smiles)。在这项研究中,这些表示分别用于训练两个神经网络模型,一个卷积神经网络(CNN)和一个经常性神经网络(RNN),以预测化合物的熔点。通过将化合物表示为结构的图像,CNN在拟合给定数据的拟合时不成功,似乎在给定数据的平均熔点附近保持恒定。然而,通过将化合物表示为系统生成的文本字符串,RNN成功地拟合了数据,总体趋势类似于实际趋势,平均绝对误差较低。但是,与结构图数据不同,用于RNN的微笑数据不包含方向信息。对于将来的研究,可能可以将两种表示形式结合起来,以达到更准确的预测模型。
国家成人虐待报告系统 (NAMRS) 和成人保护服务技术援助资源中心 (APS TARC) 是美国卫生与公众服务部社区生活管理局、老龄管理局的一个项目,由 WRMA, Inc. 管理。承包商的调查结果、结论和观点不一定代表美国卫生与公众服务部社区生活管理局、老龄管理局的官方政策。