我还感谢达卡Diit讲师Mizanur Rahman为我们提供了成功完成该项目的设施。我还对达卡(Dhaka)的DIIT讲师,讲师为我们提供了成功完成该项目的设施。我也表示感谢Mushfiqur Rahman,Dhaka Diit讲师,为我们提供了成功完成该项目的设施。
4 md.devendran@gmail.com 摘要:心脏病仍然是全球死亡的主要原因之一。早期预测和诊断对于预防严重后果和改善患者的生活质量至关重要。该项目专注于使用机器学习技术开发强大的心脏病预测系统。通过分析由各种患者属性(例如年龄、性别、血压、胆固醇水平和其他医疗参数)组成的综合数据集,该系统旨在预测患者患心脏病的可能性。该项目采用各种机器学习算法,如逻辑回归、决策树、支持向量机 (SVM) 和随机森林来对数据进行分类并提供准确的预测。使用准确度、精确度、召回率和 F1 分数等指标来评估系统的性能,确保它能够在实际应用中提供可靠的结果。此外,还应用特征选择技术来识别导致心脏病的最重要因素,从而提高模型的可解释性。提出的解决方案旨在通过提供早期警报和建议来帮助医疗保健专业人员,最终促进及时干预。该项目促进了人工智能在医疗保健领域日益重要的作用,并展示了机器学习在增强心脏病预防诊断能力方面的潜力。
a Bash Biotech Inc,600 est Broadway,Suite 700,圣地亚哥,CA 92101,美国 b 生命科学实验室,KTH-Royal Institute of Technology,斯德哥尔摩 SE-17165,瑞典 c 病理学和肿瘤生物学系,人类生物学高级研究中心(WPI-ASHBi),京都大学,京都 606-8501,日本 d 泌尿外科,东京大学医学院,东京 113-8654,日本 e 血液学和再生医学中心,卡罗琳斯卡医学院,斯德哥尔摩 SE-17177,瑞典 f 医学生物学系,Atat € urk 大学医学院,埃尔祖鲁姆 25240,土耳其 g 宿主-微生物组相互作用中心,牙科、口腔和颅面科学学院,伦敦国王学院,伦敦 SE1 9RT,英国h 哥德堡大学萨尔格伦斯卡大学医院分子与临床医学系,哥德堡 SE- 41345,瑞典 i 查尔姆斯理工大学生物与生物工程系,哥德堡 SE-41296,瑞典 j 生物创新研究所,哥本哈根 N DK-2200,丹麦 k 郑州大学药学院先进药物制备技术教育部重点实验室,郑州 450001,中国
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
日期:6 06,2024摘要:评估指标在评估糖尿病预测模型的性能中起着至关重要的作用。这些模型旨在根据年龄,体重,家族病史和血糖水平等各种因素来预测个体发展糖尿病的可能性。对这些模型的准确评估对于确保其有效性和可靠性至关重要。本文概述了常用的评估指标,以评估糖尿病预测模型的性能。本文讨论的评估指标包括准确性,灵敏度,特异性,精度,接收器操作特征(ROC)曲线,ROC曲线下的面积(AUC)(AUC),F1分数和Matthews相关系数(MCC)。定义了每个度量标准,并解释了其计算方法,解释和局限性。本文强调了考虑模型的目标和应用以及不同指标之间的权衡的重要性,以选择最合适的评估方法。此外,本文重点介绍了模型评估中的其他考虑因素,例如用于模型概括,偏见和公平评估以及预测校准的交叉验证。这些因素有助于全面的评估过程,并确保糖尿病预测模型的可靠性和公平性。
许多现有的运动预测方法都依赖于符号感知输出来生成代理轨迹,例如边界框,路图信息和traf-fight。这种符号表示是现实世界的高级表现,它可能会使运动预测模型容易受到感知错误的影响(例如,在检测开放式录音障碍时失败),而缺少场景中的显着信息(例如,糟糕的道路条件)。另一种范式是从原始传感器中端到端学习。但是,这种方法缺乏解释性,需要大量的培训资源。在这项工作中,我们提出将视觉世界的标记化为一组紧凑的场景元素,然后利用预先训练的图像基础模型和LiDAR神经网络以开放式播音方式进行编码所有场景元素。图像基础模型使我们的场景令牌可以编码开放世界的一般知识,而LiDAR神经网络编码几何信息。我们提出的表示形式可以有效地用几百个令牌编码多帧多模式观察,并且与大多数基于变压器的体系结构兼容。为了评估我们的方法,我们使用了带有凸轮嵌入的Waymo开放运动数据集。通过Waymo开放运动数据集进行的实验表明,我们的方法会导致对最先进的表现的显着改善。
[ 直流控制器是一种微电子混合设备。采用了 MIL-HDBK-217B 通知 2《电子设备可靠性预测》第 2.1.7 节中的混合故障率预测模型和程序。这种预测方法需要识别单个电子零件和基板,以及每个零件的单独电应力数据。热应力是由混合封装温度和零件功率耗散引起的。
1 弗莱堡大学医学中心骨科和创伤外科系,弗莱堡大学医学院,弗莱堡 79108,德国;sara.uelkuemen@hotmail.de(S.Ü.);pm.obid@gmail.com(PO);gernotmichaellang@gmail.com(GML)2 洛雷托医院脊柱外科系,弗莱堡 79100,德国;frank.hassel@rkk-klinikum.de(FH);alisia.zink@gmail.com(AZ)3 帕拉塞尔苏斯医科大学实验神经再生研究所、脊髓损伤和组织再生中心萨尔茨堡(SCI-TReCS),奥地利 5020 萨尔茨堡; s.couillard-despres@pmu.ac.at 4 海德堡大学医院口腔颌面外科系,69120 海德堡,德国;veronika.shavlokhova@med.uni-heidelberg.de 5 奥地利组织再生集群,1200 维也纳,奥地利 6 医学情报与信息学,慕尼黑工业大学医学院 Rechts der Isar 医学中心,81675 慕尼黑,德国;martin.boeker@tum.de * 通信地址:babak.saravi@jupiter.uni-freiburg.de