The UFS-R2O Project began in July 2020, and the first three years of the project (Phase I; July 2020 - June 2023) resulted in many accomplishments, leading to significant advancements in developing the FV3-based systems including the Hurricane Analysis and Forecast System (HAFS) version 1, the regional Rapid Refresh Forecast System (RRFS) version 1, the Global Forecast System (GFS) version 17 and Global Ensemble预测系统(GEFS)版本13。该项目的第二阶段(2023年7月至2026年6月)将继续发展和改善全球,区域和飓风预测系统及其数据同化,物理,大气组成,基础设施,验证以及后处理的组成部分。
“合成数据”是一类人工生成的数据,而不是从对现实世界的直接观察中获得的数据。可以使用不同的方法生成数据,例如从真实数据中进行统计严格采样、语义方法和生成对抗网络,或者通过创建模拟场景来生成数据,其中模型和流程相互作用以创建全新的事件数据集。
背景:临床预测是现代医疗保健不可或缺的一部分,它利用当前和历史医疗数据来预测健康结果。人工智能(AI)在该领域的整合显着提高了诊断准确性、治疗计划、疾病预防和个性化护理,从而改善了患者治疗效果和医疗效率。方法:本系统评价实施了一种结构化的四步方法,包括在学术数据库(PubMed、Embase、Google Scholar)中进行广泛的文献检索、应用特定的纳入和排除标准、提取数据以重点关注 AI 技术及其在临床预测中的应用,以及对收集到的信息进行彻底分析以了解 AI 在增强临床预测方面的作用。结果:通过对 74 项实验研究的分析,确定了 AI 显着增强临床预测的八个关键领域:(1)疾病的诊断和早期发现;(2)疾病过程和结果的预测;(3)未来疾病的风险评估;(4)个性化医疗的治疗反应;(5)疾病进展;(6)再入院风险;(7)并发症风险;(8)死亡率预测。肿瘤学和放射学是从 AI 临床预测中受益最多的专业。讨论:该综述强调了 AI 在各个临床预测领域的变革性影响,包括其在革命性诊断、提高预后准确性、辅助个性化医疗和增强患者安全方面的作用。AI 驱动的工具对医疗保健服务的效率和有效性做出了重大贡献。结论和建议:AI 在临床预测中的整合标志着医疗保健领域的重大进步。建议包括提高数据质量和可访问性、促进跨学科合作、注重道德的 AI 实践、投资 AI 教育、扩大临床试验、制定监管监督、让患者参与 AI 整合过程以及持续监测和改进 AI 系统。
1 弗莱堡大学医学中心骨科和创伤外科系,弗莱堡大学医学院,弗莱堡 79108,德国;sara.uelkuemen@hotmail.de(S.Ü.);pm.obid@gmail.com(PO);gernotmichaellang@gmail.com(GML)2 洛雷托医院脊柱外科系,弗莱堡 79100,德国;frank.hassel@rkk-klinikum.de(FH);alisia.zink@gmail.com(AZ)3 帕拉塞尔苏斯医科大学实验神经再生研究所、脊髓损伤和组织再生中心萨尔茨堡(SCI-TReCS),奥地利 5020 萨尔茨堡; s.couillard-despres@pmu.ac.at 4 海德堡大学医院口腔颌面外科系,69120 海德堡,德国;veronika.shavlokhova@med.uni-heidelberg.de 5 奥地利组织再生集群,1200 维也纳,奥地利 6 医学情报与信息学,慕尼黑工业大学医学院 Rechts der Isar 医学中心,81675 慕尼黑,德国;martin.boeker@tum.de * 通信地址:babak.saravi@jupiter.uni-freiburg.de
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
Map Choice................................................................................................................................................17 River Gauge............................................................................................................................................... 17 Hazards...................................................................................................................................................... 20 Precipitation Estimate (water.noaa.gov/precip).........................................................................................20 National Water Model................................................................................................................................22 Flood Inundation (water.noaa.gov/fim)..................................................................................................... 27 National Snow Analysis.............................................................................................................................30 Administrative Boundaries........................................................................................................................ 32 2.3.NWPS Menu Pulldowns........................................................................................................................... 32 3.The NWPS API................................................................................................................................................ 34 4.Precipitation Data............................................................................................................................................ 35 5.Appendix A: About the Precipitation Analysis............................................................................................40 6.Appendix B: QPE Data Formats....................................................................................................................44 7.Appendix C: Use of New Precipitation File Formats in Common GIS Software...................................... 49 8.Appendix D: National Forecast and Observed Shapefile Downloads.........................................................51 9.Appendix E: Data and Web Services Catalog...............................................................................................52 10.Appendix F: Legacy Static Hydrographs.................................................................................................... 59 11.附录G:NWPS河的观测和预测图标.............................................................................................................................................................................................................................................................................................................................................................................................................
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
心脏死亡(SCD)仍然是一个紧迫的健康问题,每年全球数十万。遭受SCD的人之间的杂项,从严重的心脏失败到看似健康的人,对有效的风险评估构成了重大挑战。主要依赖左心室的常规风险层次,仅导致植入可植入的心脏逆变剂的适度效率用于预防SCD。回应,艺术智能(AI)对个性化的SCD风险预测和调整预防策略有望为个别患者的独特性专案。机器和深度学习算法具有学习复杂数据和定义的终点之间的复杂非线性模式的能力,并利用这些模式来识别SCD的微妙指标和预测指标,而SCD的预测因素可能不会通过传统的统计分析而明显。但是,尽管AI有可能改善SCD风险层次,但仍需要解决重要的局限性。我们旨在概述SCD的AI预测模型的当前最新图案,重点介绍这些模型在临床实践中的机会,并确定阻碍广泛采用的关键挑战。