Systemic diseases often manifest in the eye due to their unique vasculature and neural composition. The retina, for instance, shares similar embryological origins with the brain and is supplied by a rich vascular network. This makes it an ideal site for detecting vascular and neurological changes that reflect systemic conditions. Conditions such as diabetes, hypertension, and autoimmune diseases frequently display characteristic ocular signs, which, when detected early, can facilitate timely interventions. For example, diabetic retinopathy remains a prominent example of how ophthalmic examinations can reveal the severity and progression of systemic diabetes. Retinal imaging enables the identification of microaneurysms, hemorrhages, and neovascularization, all hallmark features of the disease ( 1 ). The presence of these signs not only confirms the diagnosis but can also predict the potential for systemic complications ( 2 ).
预测性维护 (PdM) 可预测维护需求,以避免与计划外停机相关的成本。通过连接设备并监控设备生成的数据,我们可以识别导致潜在问题或故障的模式。这些见解可用于在问题发生之前解决问题。这种预测设备或资产何时需要维护的能力使我们能够优化设备寿命并最大限度地减少停机时间 [1]。可解释人工智能 (XAI) 的基本试金石是机器学习算法和其他人工智能系统,它们产生的结果人类可以轻松理解并追溯到起源 [2]。在本案例研究中,我们将考虑制造业中的维护领域。更准确地说,我们将通过将可解释的 AI 输出作为决策和预测的基础来处理 PdM。
这项研究研究了大数据分析在医疗保健中的变革潜力,重点介绍了其在预测患者结果和增强临床决策方面的应用。应对数据集成,质量,隐私问题以及CLEX机器学习模型的解释性的主要挑战。广泛的文献综述评估了医疗保健中大数据分析的当前状态,尤其是预测分析。该研究采用机器学习算法来开发针对特定患者结果的预测模型,例如疾病进展和治疗反应。基于三个关键指标评估模型:辅助性,可解释性和临床相关性。研究结果表明,大数据分析可以通过提供数据驱动的见解来彻底改变医疗保健,从而为治疗决策提供信息,预测并发症并识别高危患者。预测模型开发了有望增强临床判断和促进个性化治疗方法。此外,该研究强调了解决数据质量,集成和隐私的重要性,以确保预测分析在临床环境中的道德应用。结果有助于对医疗保健中实用的大数据应用程序进行越来越多的搜索,从而为将患者隐私与数据驱动的见解的好处提供了宝贵的收回。最终,这项研究对决策具有影响,指导实施预测模型并促进旨在改善医疗保健成果的创新。
要将预测分析整合到CTI框架中,组织必须首先评估其现有的网络安全基础架构并识别差距。强大的数据管道对于实时收集,处理和分析威胁智能至关重要。金融机构应投资可扩展的数据存储和处理系统,例如基于云的平台,以处理预测分析所需的大量数据[37]。选择正确的机器学习模型和算法是另一个关键步骤。组织必须确保对模型进行多样化和高质量数据集的培训,以避免偏见并提高其预测精度[39]。常规模型验证和更新对于跟上不断发展的威胁景观是必要的。
摘要 目的:过去几年,人工智能模型预测移植后健康并发症的有效性和能力一直存在争议。在这篇系统综述中,我们评估了不同的人工智能模型在预测心肺移植后健康结果方面的表现。材料和方法:我们研究了在线数据库。我们收集并分析了人工智能在心肺移植中的应用性能指标数据。此外,我们还进行了偏倚风险评估。结果:在我们收集的 122 项初步研究中,有 15 项被纳入分析。人工智能模型表现出很高的性能,其判别指标(例如受试者工作曲线下面积)范围从 0.620 到 0.921,并且对长期结果具有良好的校准性。随机森林和极端梯度增强模型优于其他模型,尤其是传统的线性模型。北美白人是主要的子样本,儿科人群被排除在分析之外。大多数研究表明总体偏倚风险较高,而对研究问题的适用性则显示风险较低。结论:监督机器学习模型在预测移植后健康结果方面表现良好。然而,必须考虑人工智能模型在移植中的应用的偏见和伦理问题,才能得出安全的结论。
在自动驾驶汽车中,在不确定环境中的几个道路使用者中,在交通状况中是安全有效的操作。前瞻性运动计划策略试图预测周围的交通变动,然后使用这些预测来计划无碰撞的道路。在交通环境中,有多个汽车的中央研究问题是如何处理汽车,驾驶行为不确定性和周围环境的影响之间的相互作用,以实现安全的运动计划。本文提出了在不确定和动态环境中自动驾驶汽车的运动计划方法,并有助于设计达到期望绩效的策略。第一个贡献包括一种相互作用的策略预测模型预测调节(MPC)。该方法基于相互作用的模型的整合,以预测周围汽车的运动和自己的汽车的时间变化参考目标。结果是在动态的交通环境中进行的主动运动计划,其中几辆汽车不仅允许当地重新计划道路。第二个贡献扩展了MPC方法,也能够处理环境中的多模式操作不确定性,其中包括驾驶操作和特定方式的不确定。该方法包括对这些不确定性进行建模以及引入一个参数,该参数能够在运动计划者的性能和稳健性之间保持平衡。第三个贡献集中在自动学习上,同时驱动周围汽车的运动不确定性,以避免操作员过于谨慎,而不会损害安全性。该方法是基于学习周围汽车的驾驶行为的基础,并采用后续策略来预测他们在不久的将来可以占据的道路的哪一部分。第四个贡献是一个注重环境意识的运动计划策略师,可以预测有关道路属性的周围汽车中可能驾驶操作。通过整合这些因素,该方法可以有效地预测周围汽车的运动,然后将其用于制定业务计划问题中的碰撞折叠标准。通过在各种交通情况下进行的模拟和实验,自动驾驶汽车可以通过整合对互动的意识,周围的汽车的不确定性以及周围环境的特征来实现安全有效的运动计划。
摘要预测利率是财务计划,投资策略和决策的基本任务。传统统计模型虽然广泛使用,但通常无法充分捕获复杂的非线性关系和财务数据固有的时间依赖性。本研究通过探索机器学习模型的潜力来提高利率预测的准确性和可靠性来解决这些局限性。这项研究的主要目标是评估和比较多个机器学习模型的性能,包括线性回归,支持向量机和深度学习技术,以预测利率趋势。历史数据跨越了二十年,并进行了预处理,以确保数据质量和一致性。使用明确定义的评估指标(例如平均绝对误差和均方根误差)在该数据集上训练和测试模型,以确保稳健的性能评估。结果表明,机器学习方法,尤其是深度学习模型,优于捕获复杂模式并提供更准确的预测方面的传统方法。这些发现进一步讨论了在现实世界财务环境中实施机器学习技术的实际含义,从而强调了机遇和挑战。总而言之,本研究提供了可行的见解和强大的框架,可以将机器学习整合到利率预测中,从而有助于财务预测建模的发展。
工程,浦那,马哈拉施特拉邦摘要4.0,预测维护正在改变制造业效率和可靠性的方式。这项研究介绍了一种具有机器学习方法的系统,并非常强调随机森林算法,并嵌入了技术,以预测和防止设备故障。通过利用来自IoT传感器的实时数据,我们的方法可以准确评估机器健康并在出现任何问题之前进行维护。随机森林模型的使用通过分析数据中的复合物,非线性关系来确保高预测精度,从而实现了对设备条件的强大估计。这种主动的策略大大降低了意外的停机时间,降低了维护成本并延长了机械寿命。我们回顾了预后和健康管理(PHM)的最新进展,设备剩余使用寿命(RUL)的估计以及基于条件的维护(CBM)。此外,我们还探讨了诸如工业环境中模型可解释性,可伸缩性和数据多样性之类的挑战。关键字 - 随机森林算法,IoT传感器,机器健康,机器学习,预后和健康管理(PHM),基于条件的维护(CBM)1。引言随着行业4.0的发展,正在通过高级技术的集成来改变制造过程和运营策略。这种数据驱动的方法使组织能够预测潜在的失败并提前计划维护活动,从而降低了意外的停机时间并降低了运营成本。2。预测性维护(PDM)已成为通过利用工业互联网(IIOT)的能力来提高工业设备的可靠性和效率的关键策略,企业可以从机械和系统中收集大量的实时数据,从而深入了解设备健康和性能。预测维护系统的有效性在很大程度上取决于人工智能(AI)和机器学习(ML)。这些技术促进了复杂数据集的分析,从而识别可能向设备降解的模式和异常。通过复杂的算法,组织可以开发预测模型,不仅可以评估机械的当前状况,还可以预测未来的性能。文献综述本研究[1]使用逻辑回归,支持向量机(SVM)和集成模型研究了预测维护系统的实施,并在实际工业场景中证明了它们的功效。该方法强调了来自传感器和设备的数据集成,从而提供了准确的预测,尽管它需要大量的专业知识和投资才能成功部署。这项研究[2]探讨了物联网和机器学习的整合,用于最先进的异常检测,并利用各种算法,例如装袋,增强和随机森林。该研究强调了实时监控和故障检测的优势,大大降低了维护成本和停机时间。
黄杨木被用作各个领域的原材料来源,并以其生态特性为大自然做出了巨大贡献,它正由于害虫而灭绝,主要是由于虫蛾(Cydalima Perspectalis),不受控制的切割,真菌干燥和疾病。除此之外,气候变化还对生物多样性和许多物种的分布起负面作用。因此,需要采取必要的措施来最大程度地减少气候变化对物种的影响。在这项研究中,使用了借助现场研究和文献获得的45个黄杨木位置的信息。通过现场研究观察到在这些位置的Cydalima Perspectalis的存在。数据获取后,黄杨木的当前潜在分布区(Buxus spp。)及其害虫,即自然散布在Türkiye的黄杨幼蛾(Cydalima Perspectalis),是使用Maxent 3.4.4程序和从Google Earth Engine(GEE)平台获得的WorldClim V1数据库进行了建模的。根据建模结果,预计害虫将主要在黑海地区和西马马拉地区和黄杨木(Buxus spp。)有望在爱琴海和地中海地区传播。还观察到,当前位置在很大程度上与潜在的分布区域重叠。
这项研究利用大数据分析的变革能力来通过整合电子记录,医学成像和基因组数据等多种数据源来提高医疗保健结果,以完善预测疾病进展并个性化治疗策略的预测模型。采用严格的数据管理和机器学习,我们的发现证明了有效的风险因素识别和资源优化,大大介绍了医院的再入院并改善了城市医院案例研究的证明。尽管与数据安全和集成相关的挑战,但研究与联合国可持续发展目标,尤其是可持续发展目标3(健康与福祉)和SDG 9(行业,创新和基础设施),强调了分析在促进健康公平和运营效率中的作用。倡导扩大大数据使用大数据来建立可持续的,有韧性的医疗保健基础设施,以应对多样化的人群需求,建议医疗保健提供者和政治机构利用这些见解来推动数据驱动的,以患者为中心的,以患者为中心的解决方案,进一步促进全球健康和可持续发展和可持续发展和可持续发展。未来的研究应包括新兴的数据流,例如健康的社会决定因素,以丰富这些模型,从而确保医疗保健分析的持续进步。
