细菌免疫。Science。337 : 816-821, 2012。6)Gaj T, Gersbach CA, Barbas CF.: 基于ZFN、TALEN 和CRISPR/Cas 的基因组工程方法。Trends. Biotechnol. 31 : 397-405, 2013。7)Doudna JA, Charpentier E.: 基因组编辑。利用CRISPR-Cas9 进行基因组工程的新前沿。Science。346 : 1258096, 2014。8)Strecker J, Ladha A, Gardner Z 等:利用CRISPR 相关转座酶进行RNA 引导的DNA 插入。Science。 365 :48-53,2019。9)Klompe SE,Vo PLH,Halpin-Healy TS 等:转座子编码的 CRISPR-Cas 系统直接介导 RNA 引导的 DNA 整合。Nature。571 :219-225,2019。10)Jacobi AM,Rettig GR,Turk R 等:用于高效基因组编辑的简化 CRISPR 工具及其向哺乳动物细胞和小鼠受精卵中的精简协议。方法。121-122 :16-28,2017。11)Lino CA,Harper JC,Carney JP 等:CRISPR 的递送:挑战和方法综述。药物递送。 12)Kaneko T.:用于产生和维持有价值动物品系的生殖技术。J. Reprod. Dev. 64:209-215,2018。 13)Mizuno N,Mizutani E,Sato H等:通过腺相关病毒载体通过CRISPR/Cas9介导的基因组编辑实现胚胎内基因盒敲入。iScience。9:286-297,2018。 14)Yoon Y,Wang D,Tai PWL等:利用重组腺相关病毒在小鼠胚胎中精简体外和体内基因组编辑。Nat. Commun. 9 : 412, 2018。15)Takahashi G, Gurumurthy CB, Wada K, 等:GONAD:通过输卵管核酸递送系统进行基因组编辑:一种新型的小鼠微注射独立基因组工程方法。Sci. Rep. 5 : 11406, 2015。16)Sato M, Ohtsuka M, Nakamura S.:输卵管内滴注溶液作为在体内操纵植入前哺乳动物胚胎的有效途径。New Insights into Theriogenology, InTechOpen, London, 2018, pp 135-150。 17)Sato M,Takabayashi S,Akasaka E 等:基因组编辑试剂在小鼠生殖细胞、胚胎和胎儿体内靶向递送的最新进展和未来展望。Cells。9:799,2020。18)Alapati D,Zacharias WJ,Hartman HA 等:宫内基因编辑治疗单基因肺疾病。Sci. Transl. Med。11:eaav8375,2019。19)Nakamura S,Ishihara M,Ando N 等:基因组编辑成分经胎盘递送导致中期妊娠小鼠胎儿胚胎心肌细胞突变。IUBMB life。 20)Sato T, Sakuma T, Yokonishi T 等:利用 TALEN 和双切口 CRISPR/Cas9 在小鼠精原干细胞系中进行基因组编辑。Stem Cell Reports。5:75-82,2015。21)Wu Y, Zhou H, Fan X 等:通过 CRISPR-Cas9 介导的基因编辑纠正小鼠精原干细胞中的一种遗传疾病
使用小鼠ICM胚胎Beatrice F. Tan 1,Olivier J.M.Schäffers1,2,Sarra Merzouk 1,Eric M. Bindels 3,Danny Huylebroeck 4,Joost Gribnau 1,4,CathérineDupont1,†, * 1 1 1 1, * 1 1, * 1,荷兰鹿特丹,伊拉斯mus大学医学中心,伊拉斯特大学医学中心。2荷兰鹿特丹伊拉斯mus大学医学中心妇产科和胎儿医学系。3荷兰鹿特丹伊拉斯mus大学医学中心血液学系。4荷兰鹿特丹伊拉斯mus大学医学中心的细胞生物学系。†最后一位作者。*通讯作者:c.dupont@erasmusmc.nl。抽象的基于干细胞的胚胎模型是研究早期胚胎发生的有希望的替代方法。我们介绍了两个不同的模型,以复制小鼠胚胎发育过程中胚胎内胚层和epiblast之间的动力学。诱导性GATA6(I GATA6)胚胎体(EB),仅源自I GATA6胚胎干细胞(ES)细胞,对于对原始内胚层的位置依赖性发展进行建模非常有价值。内部细胞质量(ICM)胚胎,相反,通过汇总“野生型”和i GATA6 ES细胞形成,准确,以可比的PACE模拟在E7.5到E7.5的体内发育中的相当PACE模拟。值得注意的是,ICM胚胎模型细胞分类,并通过玫瑰花结状阶段,将层级从幼稚到启动多能的过渡。此外,在该模型中缺乏胚胎外胚层样细胞,将表皮和内脏内胚层引导到前发育的命运。因此,I GATA6 EB和ICM胚胎是在小鼠早期胚胎发育过程中对细胞命运决策的理解的强大工具。引言小鼠的植入前发育标志着两个细胞命运决策,每种都会导致谱系隔离[1]。在胚泡中,第一个隔离发生在胚胎第3-3.5(e3-e3.5)的情况下,并形成了滋养型剂(TE)和内部细胞质量(ICM)。随后在ICM中随后发生了第二个隔离,并形成了原始内胚层(PRE,低纤维细胞)和层细胞。在第二个决策中运行的机制涉及位置效应,细胞分选和凋亡。随着发育的进展,PRE不仅形成顶叶内胚层,还会产生内脏内胚层(VE),当后者从幼稚到启动的多能状态过渡时,围绕着层状的内胚层(VE)。pre/ve与层细胞之间的细胞间通信以及对其的相互解释调节了这两个谱系中每一个的发展。然而,沿子宫中小鼠小鼠胚胎的差可及性,了解胚胎发生的这些阶段的参与者和基因调节网络的变化受到了复杂,重叠和冗余的分子机制的阻碍。基于干细胞的胚胎模型已成为研究哺乳动物胚胎早期发育的有吸引力的替代方法,但并非没有局限性。类囊体的发育潜力较差,因为它们的PRE(E3.5-E4)的形成仍然很困难,并且取决于各种培养添加剂[2,11]。小鼠整合性胚胎模型,例如胚胎[2-4]和ETX胚胎[5-10],它们分别模拟了植入前和植入后发育,无法准确复制E3-E5.5之间的体内发育阶段。ETX胚胎在发育的特定阶段仍处于装配模式,因此对于从E5.5开始建模和研究胚胎发生最有用。此外,在这两个综合胚胎模型中达到高效率都构成了重要的
Abkowitz, JL、Persik, MT、Shelton, GH、Ott, RL、Kiklevich, JV、Catlin, SN 和 Guttorp, P. (1995)。大型动物造血干细胞的行为。美国国家科学院院刊,92 (6),2031–2035。https://doi.org/10.1073/pnas.92.6.2031 Brinkman, EK、Kousholt, AN、Harmsen, T.、Leemans, C.、Chen, T.、Jonkers, J. 和 Van Steensel, B. (2018)。模板引导的 CRISPR/Cas9 编辑的简易量化。核酸研究,46 (10),e58。 https://doi.org/10.1093/nar/gky164 Le, QA, Hirata, M., Nguyen, NT, Takebayashi, K., Wittayarat, M., Sato, Y., Namula, Z., Nii, M., Tanihara, F., & Otoi, T. (2020)。使用不同浓度的 Cas9 蛋白和靶向肌肉生长抑制素 (MSTN) 基因的 gRNA 进行电穿孔处理对猪受精卵发育和基因编辑的影响。动物科学杂志,91 (1),e13386。 https://doi.org/10.1111/asj.13386 Li, R.、Liu, Y.、Pedersen, HS、Kragh, PM 和 Callesen, H. (2013)。猪单性生殖胚胎去除透明带后的发育和质量。Theriogenology,80 (1),58–64。https://doi.org/10.1016/j.theriogenology.2013.03.009 Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., & Gerdts, V. (2012)。猪:人类传染病的模型。微生物学趋势,20 (1),50–57。Nishio, K., Tanihara, F., Nguyen, T.-V., Kunihara, T., Nii, M., Hirata, M., Takemoto, T., & Otoi, T. (2018)。电穿孔过程中电压强度对体外生产的猪胚胎发育和质量的影响。家畜繁殖,53 (2),313–318。https://doi. org/10.1111/rda.13106 Peng, H., Wu, Y., & Zhang, Y. (2012)。通过电穿孔将 DNA 和吗啉代诺西酮有效递送到小鼠植入前胚胎中。PLoS One,7 (8),e43748。https://doi.org/10.1371/journal.pone.0043748 Peura, TT, & Vajta, G. (2003)。绵羊和牛核移植中现有方法与新方法的比较。克隆干细胞,5 (4),257–277。 https://doi.org/10.1089/153623003772032772 Qin, W., Dion, SL, Kutny, PM, Zhang, Y., Cheng, AW, Jillette, NL, Malhotra, A., Geurts, AM, Chen, Y.-G., & Wang, H. (2015). 通过合子电穿孔核酸酶在小鼠中实现高效的 CRISPR/Cas9 介导基因组编辑。遗传学,200 (2), 423–430。 https://doi.org/10.1534/ Genetics.115.176594 Remy, S., Chenouard, V., Tesson, L., Usal, C., Ménoret, S., Brusselle, L., Hes- lan, J.-M., Nguyen, TH, Bellien, J., Merot, J., De Cian, A., Giovannangeli, C., Concordet, J.-P., &Anegon, I. (2017). 通过使用电穿孔将 CRISPR/Cas9 蛋白和供体 DNA 递送到完整受精卵中来生成基因编辑大鼠。科学报告,7 (1),16554。https://doi.org/10。 1038/s41598-017-16328-y Tanihara, F.、Hirata, M.、Nguyen, NT、Sawamoto, O.、Kikuchi, T.、Doi, M. 和 Otoi, T. (2020)。通过将 CRISPR/Cas9 系统电穿孔到体外受精的受精卵中有效生成 GGTA1 缺陷猪。BMC Biotechnology,20 (1),40。https://doi.org/10.1186/s12896-020-00638-7
