“释放大数据的力量:用于增强分析的创新预处理方法”是一章开创性的章节,探讨了预处理在大数据分析中的关键作用。它介绍了将原始的非结构化数据转换为干净的可分析格式的各种技术,解决了数据量、速度和多样性带来的挑战。本章强调了预处理对于准确结果的重要性,介绍了高级数据清理、集成和转换技术,并讨论了实时数据预处理、新兴技术和未来方向。本章是研究人员和从业人员的综合资源,使他们能够增强数据分析并从大数据中获得有价值的见解。
机器学习算法对于各种预测任务很有用,但它们也可以学习如何根据性别,种族或其他敏感属性来区分。这种实现产生了公平的机器学习领域,该领域旨在识别,量化和最终减轻这种算法偏见。此手稿描述了R软件包Fairadapt,该软件包实现了因果推理预处理方法。通过使用因果图形模型以及观察到的数据,该方法可用于解决“我的薪水是什么,如果我的性别/种族不同?”的假设问题。这种个人级别的反事实推理可以帮助消除歧视并有助于证明公正的决定。我们还讨论了适当的放松,假设某些因果关系从敏感属性到结果没有歧视性。
数据预处理是机器学习管道的重要组成部分(García等,2015; Alasadi和Bhaya,2017;çetinandYıldız,2022),因为它极大地影响了数据质量(Famili等,1997),并发现可以优化机器学习模型的关系,并将其发现。尽管是一个耗时的过程(Anaconda,2022),但这是基本的,尤其是对于大型数据集,降低维度可以在随后的过程中节省时间(García等,2016)。数据预处理不仅包括质量检查,还包括关键元素,例如转换,填充丢失的数据,离群值检测以及模型的变量选择。尽管普遍认为,基于树的模型不需要预处理,因为它们可以在没有任何更改的情况下处理它,但实验表明我们可以通过适当的预处理获得更好的结果(Caruana等,2008; Grinsztajn等,20222)。这种理解可能对自动化机器学习(AUTOML)管道有益,使我们能够优化和实施一个自动化的机器学习过程,该过程可以适当地预处理数据集以获得所选模型以产生更好的结果。本文提出了一个广泛的实验,涉及38个数据预处理策略,用于二进制和多类分类以及回归任务。我们使用五个基于树的模型:决策树,随机森林,XGBOOST,LIGHTGBM和CATBOOST。我们扩展了Forester 1软件,包括更多干扰自动模型学习的预处理。有关该工具的更多信息可在附录A中获得。
视觉信息的处理主要发生在视网膜中,视网膜预处理功能极大地提高了视觉信息的传输质量和效率。人工视网膜系统为有效的图像处理提供了有希望的途径。在这里,提出了石墨烯/ INSE/ H -BN的异质结构,该结构通过改变单个波长激光器的强度,表现出负和正照相(NPC和PPC)效应。此外,基于激光的功率依赖性光导不传导效应:I pH = -mp𝜶1 + 1 + NP 𝜶2,提出了一个修改的理论模型,该模型可以揭示负/阳性光导能效应的内部物理机制。当前的2D结构设计允许晶体管(FET)表现出出色的光电性能(R NPC = 1.1×10 4 AW - 1,R PPC = 13 AW - 1)和性能稳定性。,基于阴性和阳性光电传感效应成功模拟了视网膜预处理过程。此外,脉冲信号输入将设备的响应性提高了167%,并且可以提高视觉信号的传输质量和效率。这项工作为构建人工视觉的建设提供了一个新的设计思想和方向,并为下一代光电设备的整合奠定了基础。
视觉信息的处理主要发生在视网膜中,视网膜预处理功能极大地提高了视觉信息的传输质量和效率。人工视网膜系统为有效的图像处理提供了有希望的途径。在这里,提出了石墨烯/ INSE/ H -BN的异质结构,该结构通过改变单个波长激光器的强度,表现出负和正照相(NPC和PPC)效应。此外,基于激光的功率依赖性光导不传导效应:I pH = -mp𝜶1 + 1 + NP 𝜶2,提出了一个修改的理论模型,该模型可以揭示负/阳性光导能效应的内部物理机制。当前的2D结构设计允许晶体管(FET)表现出出色的光电性能(R NPC = 1.1×10 4 AW - 1,R PPC = 13 AW - 1)和性能稳定性。,基于阴性和阳性光电传感效应成功模拟了视网膜预处理过程。此外,脉冲信号输入将设备的响应性提高了167%,并且可以提高视觉信号的传输质量和效率。这项工作为构建人工视觉的建设提供了一个新的设计思想和方向,并为下一代光电设备的整合奠定了基础。
摘要 - 属于一组精神疾病,这些疾病是根据标准化诊断手册的标准诊断出的。诊断方案包括评估患者的症状,但迄今为止,尚无客观评估或测量的方法。脑电图(EEG)是一种非侵入性大脑电活动测量技术。当前的研究主要关注脑电图数据和特征提取,机器学习(ML)和深度学习(DL)来对情感障碍进行分类。在本文中,重点是衡量预处理EEG信号对ML模型的影响。评估了以下预审查方法的影响:信号滤波,独立组件分析(ICA)和规范相关分析(CCA)。这些方法是在由来自诊断为情感障碍和35名健康受试者的70名受试者的EEG信号组成的数据集上评估的。预处理后,为每个受试者提取570个功能,并使用几种ML模型进行分类。CCA提供了最佳结果,决策树分类器的最高F1得分为0.9756。CCA应被视为一种有益的预处理方法,以在构建脑电图数据的复杂模型时可能会改善分类结果。关键字 - 脑电图,规范相关分析,独立组件分析,预处理,AFFISCAING疾病Hokdoitujkl
抽象孤立的手语识别(ISLR)的目的是将标志分类为相应的光泽,但由于快速运动和小动手变化,它仍然具有挑战性。基于姿势的方法,由于其对环境的鲁棒性而引起了人们的注意,这对于这种挑战性的运动和变化至关重要,这是由于难以从嘈杂的关键点捕获小的关节运动。在这项工作中,我们强调了预处理关键以减轻此类错误风险的重要性。我们使用锚点采用归一化来准确跟踪骨骼接头的相对运动,重点是手动运动。此外,我们实施双线性插值来重建关键点,特别是为了检索未检测到的手的缺失信息。这项工作中提出的预处理方法表明,通过在WLASL数据集上的数据增强,准确性提高了6.05%,并且在基于姿势的方法中最高的数据增加了准确性83.26%。所提出的方法显示出在手部形状重要性的迹象的情况下,尤其是当某些框架没有被发现的手时。
摘要在本文中,我们提出了一种综合的工具,即在用于机器学习(ML)应用的历史训术研究领域预处理古典阿拉伯语(CA)文献。最近的ML模型要求培训数据以特定格式(例如XML,TEI,conll)之后将其用于自然语言处理(NLP)任务,例如命名实体识别(NER)或主题建模(TM)。我们报告了我们的方法的工作原理,并可以由其他具有类似努力的研究人员应用。因此,这种全面的预处理工具的重要性被证明了,因为这种新颖的方法还没有CA的前辈。我们取得了结果,使能够培训当前的ML模型,从而为CA文献提供NER和TM的最新性能。我们将其工具沿其源代码和NLP研究社区免费提供的数据。
抽象 - 各个年龄段和社会经济水平的人,正在被诊断出患有2型糖尿病的诊断,其速度比以往任何时候都高。它可能是多种疾病的根本原因,其中最著名的包括失明,肾脏疾病,肾脏疾病和心脏病。因此,设计系统的设计至关重要,基于医疗信息,能够可靠地检测患有糖尿病的患者。我们提出了一种鉴定糖尿病的方法,该方法涉及使用交叉验证训练模式在五到10倍之间训练深神经网络的特征。PIMA印度糖尿病(PID)数据集是从UCI的机器学习存储库一部分的数据库中检索的。此外,十倍交叉验证的结果显示出97.8%的精度,召回97.8%,使用RF算法的PIMA数据集的精度为97.8%。这项研究检查了许多其他生物医学数据集,以证明机器学习可以用于开发可以准确预测糖尿病的有效系统。在生物数据集的实验发现中使用了几种不同类型的机器学习分类器,例如KNN,J48,RF和DT。获得的发现表明我们的可训练模型能够正确分类生物医学数据。通过实现Parikson数据集的较高精度,召回和精确度来证明这一点。
仅供研究使用。不可用于诊断程序。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。Streck 是 Streck Laboratories Inc. 的商标。COL117647 0322