endnotes 1 Crook等。(2016)可以增加现有船只唤醒的反照率,以减少气候变化,in:JGR Alterneres,第1卷。121(4):1549 - 1558,https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015jd024201#jgrd52751-bib-0008; ETC Group andHeinrichBöll基金会(2020)地球工程地图:微泡和海泡沫,https://map.geoengineeringmonitor.org/ 2 Seitz(2010年)(2010年)明亮的水:水溶液,节水,节水和气候变化,in:Climatic Crange,Climatic Crange,第1卷,第1卷。105(3-4):365 - 381,https://link.springer.com/article/10.1007/s10584-010-010-9965-8; Kintisch(2010)微小的气泡可以冷却地球?in:ScienceMag,在线发布:2010年3月26日,https://www.sciencemag.org/news/news/2010/03/could-tiny-tiny-bubbles-cool-cool-planet; Edwards(2010)削减全球变暖的明亮水提议,in:Phys.org,在线发布:2010年3月29日,https://phys.org/news/2010-03-03-bright-global.html 3同上(Crook等)(2016)); University of Leeds (2016) Smaller, longer-lasting bubbles could reduce global temperatures, in: Priestley International Centre for Climate News, published online: March 2, 2016, https://climate.leeds.ac.uk/news/smaller-longer-lasting-bubbles-could-reduce-global-temperatures/ 4 Ortega and Evans (2018) On the energy required to maintain an ocean mirror using the泡沫的反射,在:机械工程师制度的论文集,部分:海上环境工程杂志,第233(1):388 - 397,https://journals.sagepub.com/doi/doi/abs/10.1177/1177/1477/1477/1477/1477/1477/1477/1477/1477/1477/147777777777777777777750442? Rowland等。(2015)海盐作为潜在的海洋镜材料,在:RSC Advances,第1卷。化学。Phys。,第1卷。 (2016),Gabriel等。 (2016))Phys。,第1卷。(2016),Gabriel等。(2016))5(49):38926 - 38930,https://pubs.rsc.org/en/content/content/articlelanding/2015/ra/c5ra03469h#divabstract 5 Gabriel等。(2017)G4FOAM实验:区域海洋反照率修改的全球气候影响,载于:Atmos。17:595-13,https://www.atmos-chem-phys.net/17/595/2017/acp-17-595-2017.pdf 6同上(2017)); Evans等。(2010)海洋泡沫可以限制全球变暖吗?,在:气候研究,第1卷。42(2):155-160,http://www.int-res.com/abstracts/cr/v42/n2/p155-160/; Robock(2011)泡沫,泡沫,辛劳和麻烦。编辑评论。,在:气候变化,第1卷。105:383-385 7同上(Crook等人,(2016),Gabriel等。(2017)); Evans等。(2010),Robock(2011))8 Carrington(2014)科学家说,将阳光反映在太空中带来了可怕的后果。 (Crook等人(2016),Robock(2011))10 Sheppard(2010)BP的糟糕分手:如何有毒是corexit?in:Mother Jones,在线出版:在线发布:2010年9月/2010年,https://wwwww.motherjones.com/%20 environment/2010/2010/2010/08/bp-ocean-dispersant-corepersant-corexit/11 ibign
DOI:http://dx.medra.org/10.17374/targets.2020.23.92 Ana G. Neo 生物有机化学和膜生物物理实验室 (LOBO),有机和无机化学系,埃斯特雷马杜拉大学,10003 卡塞雷斯,西班牙(电子邮件:aneo@unex.es) 摘要。光化学环化允许获得多种类型的杂环和成分,成为合成有机化学的有力工具。在这种类型的过程中,光诱导周环闭合反应生成中间体,该中间体以不同的方式演变成稳定的最终产物。光环化发生在非常温和和简单的反应条件下,具有很好的原子经济性,并且对环境非常尊重。目录 1. 简介 2. 氧化条件下的光化学环化 2.1. 用于合成具有生物特性的分子 2.2。新材料设计中的应用 3. 碱存在下的光化学环化 3.1. 用于合成具有生物特性的分子 3.2. 新材料设计中的应用 4. 环化/脱卤及相关 5. 杂项 6. 结论 致谢 参考文献 1. 简介 约瑟夫·普里斯特利 (Joseph Priestley, 1733-1804) 对硝酸中阳光效应的研究和对光合作用原理的发现被认为是光化学的开端。在有机化学领域,光化学时代是由坎尼扎罗 (Cannizzaro) 对光对山托宁的影响的研究开创的,而 Giacomo Ciamician 和 Paul Silber 基本上是对光对有机化合物影响的完整和创新研究。在这些先驱之后,其他研究人员,如 Emanuele Paternò、Otto Schenck、Julius Schmidt 或 Alexander Schönberg,也将注意力集中在研究光对分子反应性的影响上。 1,2 早期的光化学研究主要研究太阳光对分子反应性的作用,因为当时人们还不知道光的性质及其在原子水平上的影响。目前,人们了解到,分子吸收紫外-可见光会将电子从基态转移到激发态,随后这些电子重新分布,从而形成在热条件下无法获得的产品。此外,光反应还具有其他吸引人的特性,如原子效率高、环境友好、功能组和杂原子耐受性范围广、反应非常简单,而且通常成本低廉。3-6 所有这些特性使得光化学反应在有机化学各个领域的各种分子合成中发挥着重要作用。7-13 在众多类型的光化学反应中,光诱导的周环闭合反应,尤其是6π-光环化反应是其中最重要的一种。这种类型的反应允许在单一且绿色的工艺中构建芳香族和杂芳族多环化合物。14 通常,6π-光环化反应分为氧化、消除和重排。本综述按照以下分类进行组织:首先,它们将展示一些氧化条件下的光环化例子以及您在合成具有生物活性的化合物和材料中的应用。第二部分是关于碱性介质中的光环化和