1. 加州能源储存联盟 (CESA),Jin Noh 2. 能源效率和可再生技术中心 (CEERT),John V. White 3. 洛杉矶市 - 气候紧急动员办公室,Marta Segura 4. 洛杉矶市 - 议会第 02 区,议员 Paul Krekorian,Aaron Ordower 5. 洛杉矶市 - 议会第 03 区,议员 Bob Blumenfield,Jeff Jacobberger 6. 洛杉矶市 - 议会第 13 区,议员 Mitch O'Farrell,David Giron 7. 洛杉矶市 - 首席立法分析师办公室 (CLA),Blayne Sutton-Willis 8. 洛杉矶市 - 首席立法分析师办公室 (CLA),Rafael Prieto 9. 洛杉矶市 - 市行政官办公室 (CAO),Sarai Bhaga 10. 洛杉矶市 - 市长办公室,Paul Lee 11.公共问责(OPA),Frederick Pickel 12. 食品与水观察,Jasmin Vargas 13. 洛杉矶商业委员会(LABC),Adam Lane 14. 洛杉矶商业委员会(LABC),Arielle Lopez 15. LADWP 宣传委员会,Jack Humphreville 16. LADWP 理事会,Mia Lehrer 17. LADWP 谅解备忘录监督委员会,Tony Wilkinson 18. 洛杉矶联合学区(LAUSD),Christos Chrysiliou 19. 国家资源保护委员会(NRDC),Amanda Levin 20. 社区委员会可持续发展联盟(NCSA),Dan Kegel 21. 社区委员会可持续发展联盟(NSCA),Ravi Sankaran 22. Pacoima Beautiful,Felipe Escobar 23. 洛杉矶港(POLA),Carlos Baldenegro 24. 塞拉俱乐部,Francis Yang 25. 塞拉俱乐部, Katie Ramsey 26. 南加州天然气公司 (SoCalGas),Jonathan Peress 27. 加州大学洛杉矶分校 (UCLA),Bonny Bentzin 28. 南加州大学 (USC),Zelinda Welch 29. 水电协会,Bill Engels 30. 水电协会,William Barlak 31. Bryan A. Cope 项目开发经理 32. Vj
J. Rodriguez-Pacheco 1 , R. F. F. F. M. M. M. M. M. M Curse 2, L. Panitzsch 2, St. Boden 2, St. I. I. Bötcher Böhm 2 , J. J. Blanco 1 , W Gutierrez 1 , D. K. Haggerty 3 , J. R. Heber 3 , B. Heber 2 , M. E Hill 3 , M. Jungling 2 , S. Kerem 3 , V. Knierim J. Lees 3,St.Liang 3,A。Greece 1,D Russu 1,I。Sánchez1,C S. Horbury 6,B。Clecker 16,K.-L。 Klein 8,E,O。Gevin 24,N。Gopalswamy 26,Y。主题10,St. Hofmeister 9,N。Vilmer 8,A。P. Walsh 7,L。Wang 13,M。Wiedenbeck 15,K。Wirth 14和Q. Zong Zong Zong Zong
cryopreserva on Rododuc ve材料和细胞系:背景,好处和挑战,该陈述提出了在技术上使用冷冻液和细胞材料样品的挑战和用途。应与“术语词汇表”和“关于使用冷冻保存材料和生物技术的陈述”的“ cryopreserva”和“ eaza posi”进行阅读。背景冷冻库或冷冻库旨在保留体内的完整或活细胞,以及重现材料(种质)和体外开发的细胞系,以实现未来的复兴和使用。这是通过HAL NG代谢过程通过特定的,MUL - 步骤冷却,冻结和存储方案来完成的,这些方案可能会在样本类型和物种之间变化。样品在-196°C的温度下存储,并且使用液氮(通常在LN2蒸气相)实现此超低温度。对诸如种质(卵母细胞/卵子或精子)等材料的质量,胚胎,以及卵巢或卵巢或tes cular ssue的胚胎可能是人口管理的有用工具,并且可以通过维持基因的ex nc的威胁或偶数造成的基因的威胁而成为管理中极为有价值的物种,甚至可能是基因的威胁。对于诸如EAZA EXAIT计划(EEP)之类的管理计划中的Popula,它具有大量成功的机会,尤其是当他们具有需要长期持久性的角色时(例如保险popula)。此外,它可以允许建立重要的保护角色的ADDI ONAL EEP,如果没有基因C材料供将来使用的基因C材料,目前可能不可行。常见的,公认的辅助再现技术,这些技术是含有冷冻保存的再现材料,例如(ai)上的(AI)上的Ar-firial interemina in(IVF)和胚胎转移(ET)(Prieto et.Al.,2014)。细胞系是建立的细胞培养物,当提供适当的环境和生长培养基时,可以无限地扩散。以保持其细胞活力的方式保存或冷冻时,可以将它们解冻并用于研究目的。这消除了恒定维持生命的复制细胞的需求。应用并使用了各种技术,用于使用冷冻保存的材料,其中一些技术已经建立了良好,更常用,还有其他最新的开发可用。尽管新技术是新的可能性,但它们的使用需要与对任何可能有害后果的担忧保持平衡。eaza均不认可所有应用程序和使用(在任何情况下),正如“ eaza posi有关使用冷冻保存材料和生物技术的说明”中概述的。辅助再现技术
Bacevic, K., Noble, R., Soffar, A., Wael Ammar, O., Boszonyik, B., Prieto, S., … Fisher, D. (2017)。空间竞争限制了对靶向癌症治疗的抵抗力。自然通讯,8 (1):1995。Beauchamp, G., & Ruxton, GD (2007)。误报和反捕食者警惕性的进化。动物行为,74 (5), 1199–1206。Croset, A., Cordelieres, FP, Berthault, N., Buhler, C., Sun, JS, Quanz, M., & Dutreix, M. (2013)。通过使用 siDNA 人工激活 PARP 来抑制 DNA 损伤修复。核酸研究,41 (15), 7344–7355。 Cunningham, JJ、Gatenby, RA 和 Brown, JS (2011)。癌症治疗中的进化动力学。分子药剂学,8 (6),2094–2100。Gatenby, R. 和 Brown, J. (2018)。癌症治疗中耐药性的进化和生态学。冷泉港医学展望,8 (3),a033415。Gatenby, RA、Brown, J. 和 Vincent, T. (2009)。应用生态学的经验教训:使用进化双重约束控制癌症。癌症研究,69 (19),7499–7502。Gillies, RJ、Verduzco, D. 和 Gatenby, RA (2012)。致癌作用的进化动力学以及靶向治疗不起作用的原因。自然癌症评论,12 (7),487–493。 Herath, NI, Berthault, N., Thierry, S., Jdey, W., Lienafa, MC, Bono, F., … Dutreix, M. (2019)。DNA 修复抑制剂 Olaparib 和 AsiDNA 在治疗卡铂耐药肿瘤中的疗效和毒性的临床前研究。肿瘤学前沿,9,1097。Holohan, C.、Van Schaeybroeck, S.、Longley, DB 和 Johnston, PG (2013)。癌症药物耐药性:一种不断发展的范式。自然评论癌症,13 (10),714–726。Jdey, W.、Kozlak, M.、Alekseev, S.、Thierry, S.、Lascaux, P.、Girard, PM, … Dutreix, M. (2019)。 AsiDNA 治疗可诱导累积抗肿瘤功效,且获得性耐药概率较低。肿瘤形成,21 (9),863–871。Jdey, W.、Thierry, S.、Popova, T.、Stern, MH 和 Dutreix, M. (2017)。肿瘤中的微核频率是遗传不稳定性以及对 DNA 修复抑制剂 AsiDNA 敏感性的预测生物标志物。癌症研究,77 (16),4207–4216。Jdey, W.、Thierry, S.、Russo, C.、Devun, F.、Al Abo, M.、Noguiez-Hellin, P.、……Dutreix, M. (2017)。药物驱动的合成致死:使用 AsiDNA 和 PARP 抑制剂组合绕过肿瘤细胞遗传学。 Clinical Cancer Research,23 (4), 1001–1011。Kam, Y., Das, T., Tian, H., Foroutan, P., Ruiz, E., Martinez, G., & Gatenby, RA (2015)。付出却没有收获:使用“替代药物”抑制多药耐药癌细胞的增殖。International Journal of Cancer,136 (4), E188–E196。
1. Kyeremateng, N. A.、Brousse, T. 和 Pech, D. (2016)。微型超级电容器作为片上电子设备的微型储能组件。Nat. Nanotechnol. 12,7。2. Long, J. W.、Dunn, B.、Rolison, D. R. 和 White, H. S. (2004)。三维电池架构。Chem. Rev. 104,4463-4492。3. Arthur, T. S.、Bates, D. J.、Cirigliano, N.、Johnson, D. C.、Malati, P.、Mosby, J. M.、Perre, E.、Rawls, M. T.、Prieto, A. L. 和 Dunn, B. (2011)。三维电极和电池架构。MRS Bull。 36 , 523-531。4. Roberts, M.、Johns, P.、Owen, J.、Brandell, D.、Edstrom, K.、El Enany, G.、Guery, C.、Golodnitsky, D.、Lacey, M.、Lecoeur, C. 等 (2011)。3D 锂离子电池——从基础到制造。J. Mater. Chem. 21 , 9876。5. Oudenhoven, J. F.、Baggetto, L. 和 Notten, P. H. (2011)。全固态锂离子微电池:各种三维概念的回顾。Adv. Energy Mater. 1 , 10-33。 6. Yabuuchi, N., Kubota, K., Dahbi, M., 和 Komaba, S. (2014)。钠离子电池的研究进展。Chem. Rev. 114 , 11636-11682。 7. Wu, X., Leonard, D. P., 和 Ji, X. (2017)。新兴非水系钾离子电池:挑战与机遇。Chem. Mater. 29 , 5031-5042。 8. Muldoon, J., Bucur, C. B., 和 Gregory, T. (2014)。非水系多价二次电池的探索:镁及其他。Chem. Rev. 114 , 11683-11720。 9. Dunn, B., Kamath, H., 和 Tarascon, J. M. (2011)。电网电能存储:电池的选择。科学 334, 928-935。 10. Ni, J. 和 Li, L. (2018)。用于钠微电池的自支撑三维阵列电极。副词。功能。马特。 28, 1704880。 11. Komaba, S.、Murata, W.、Ishikawa, T.、Yabuuchi, N.、Ozeki, T.、Nakayama, T.、Ogata, A.、Gotoh, K. 和 Fujiwara, K. (2011)。硬碳电极的电化学钠插入和固体电解质界面。副词。功能。马特。 21、3859-3867。 12. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., 和 Wang, C. (2014)。膨胀石墨作为钠离子电池的优质阳极。Nat. Commun. 5, 4033。13. Ni, J., Fu, S., Wu, C., Maier, J., Yu, Y., 和 Li, L. (2016)。硫掺杂 TiO 2 的自支撑纳米管阵列可实现超稳定和强大的钠存储。Adv. Mater. 28, 2259-2265。14. Fu, S., Ni, J., Xu, Y., Zhang, Q., 和 Li, L. (2016)。氢化驱动导电 Na 2 Ti 3 O 7 纳米阵列作为钠离子电池的坚固无粘合剂阳极。纳米快报。16,4544-4551。
基因治疗和递送论文在IVIS上成像1。Agrawal VK,Copeland KM,Barbachano Y,Rahim A,Seth R,White CL,Hingorani M,Nutting CM,Kelly M,Harris P,Pandha H,Melcher AA,Melcher AA,Vile RG,Porter RG,Porter C,Porter C,Harrington KJ。微血管无组织转移用于基因输送:体内评估质粒和腺病毒递送的不同途径。基因治疗。2009年1月; 16(1):78-92。2。ahmed N,Ratnayake M,Savoldo B,Perlaky L,Dotti G,Wels WS,Bhattacharjee MB,Gilbertson RJ,Shine HD,Weiss HL,Rooney CM,Heslop He,Gottschalk S.经过实验性Medulloblastoma的恢复后,HESSCHALK S.经过实验性髓鞘瘤的转移后,具有超含Her2-sperific T细胞的转移。癌症。2007年6月15日; 67(12):5957-5964。3。Ahmed N,Salsman VS,Kew Y,Shaffer D,Powell S,Zhang YJ,Grossman RG,Heslop HE,GottschalkS。Her2特异性T细胞靶向原发性胶质母细胞瘤干细胞并诱导自体实验肿瘤的消退。Clin Cancer Res。 2010年1月15日; 16(2):474-485。 4。 Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。 mol ther。 2009年10月; 17(10):1779-1787。 5。 Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。 美国生理学杂志,细胞生理学。 2004年9月; 287(3):C790-796。 6。 超声Med Biol。 7。Clin Cancer Res。2010年1月15日; 16(2):474-485。4。Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。 mol ther。 2009年10月; 17(10):1779-1787。 5。 Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。 美国生理学杂志,细胞生理学。 2004年9月; 287(3):C790-796。 6。 超声Med Biol。 7。Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。mol ther。2009年10月; 17(10):1779-1787。5。Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。美国生理学杂志,细胞生理学。2004年9月; 287(3):C790-796。6。超声Med Biol。7。Alter J,Sennoga CA,Lopes DM,Eckersley RJ,Wells DJ。微泡稳定性是体内基因转移中介导的超声和微泡效率的主要决定因素。2009年6月; 35(6):976-984。AOI A,Watanabe Y,Mori S,Takahashi M,Vassaux G,Kodama T.使用纳米/微泡和超声波和超声波疱疹疱疹单纯胸腺胸腺胺激酶介导的自杀基因治疗。超声Med Biol。2007年12月18日。8。Arenas F,Hervias I,Uriz M,Joplin R,Prieto J,Medina JF。 ursexyoxycholic和糖皮质激素的组合上调了人肝细胞中AE2替代启动子。 J Clin Invest。 2008年2月; 118(2):695-709。 9。 Asokan A,Johnson JS,Li C,Samulski RJ。 生物发光的病毒粒子壳:定量细胞和活体动物中AAV载体动力学的新工具。 基因治疗。 2008年12月; 15(24):1618-1622。 10。 aung W,Hasegawa S,Koshikawa-Yano M,Obata T,Ikehira H,Furukawa T,Aoki I,Aoki I,SagaT。通过光学和磁共振成像的实验性肿瘤中体内电穿孔介导的转基因表达的可视化。 基因治疗。 2009年7月; 16(7):830-839。 11。 Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。Arenas F,Hervias I,Uriz M,Joplin R,Prieto J,Medina JF。ursexyoxycholic和糖皮质激素的组合上调了人肝细胞中AE2替代启动子。J Clin Invest。2008年2月; 118(2):695-709。9。Asokan A,Johnson JS,Li C,Samulski RJ。生物发光的病毒粒子壳:定量细胞和活体动物中AAV载体动力学的新工具。基因治疗。2008年12月; 15(24):1618-1622。10。aung W,Hasegawa S,Koshikawa-Yano M,Obata T,Ikehira H,Furukawa T,Aoki I,Aoki I,SagaT。通过光学和磁共振成像的实验性肿瘤中体内电穿孔介导的转基因表达的可视化。基因治疗。2009年7月; 16(7):830-839。 11。 Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。2009年7月; 16(7):830-839。11。Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。基因治疗。2010年5月6日。12。mol ther。2009年6月; 17(6):1003-1011。13。mol ther。14。Balani P,Boulaire J,Zhao Y,Zeng J,Lin J,WangS。高迁移率组Box2启动子控制的自杀基因表达能够靶向胶质母细胞瘤治疗。Barth AS,Kizana E,Smith RR,Terrovitis J,Dong P,Leppo MK,Zhang Y,Miake J,Olson EN,Schneider JW,Abraham MR,Marban E.带有NA+ CA2+ CA2+ CA2+ CAC2+ CACC2+ CACC2+ CACA2+ CACA2+ CAPIER RECTIER RECTIER CARDICENIC NACSIENIC NICENIC NACCONIC NICEAGIC DEACKICONIC NACELIC NIDEMIAN CARMIDIC NACELIC SACTIIC SACELIC NIDEMIAN IDIAGION的病毒载体。2008年5月; 16(5):957-964。Basile P,Dadali T,Jacobson J,Hasslund S,Ulrich-Vinther M,Soballe K,Nishio Y,Drissi MH,Langstein HN,Mitten DJ,O'Keefe RJ,Schwarz EM,Awad HA。冻干肌腱同种异体移植作为GDF5基因递送的组织工程支架。mol ther。2008年3月; 16(3):466-473。15。Bayer M,Kantor B,Cockrell A,Ma H,Zeithaml B,Li X,McCown T,KafriT。大型U3缺失导致非整合慢病毒载体的体内表达增加。mol ther。2008年12月; 16(12):1968-1976。16。Bell JB,Aronovich EL,Schreifels JM,Beadnell TC,Hackett PB。 的持续时间Bell JB,Aronovich EL,Schreifels JM,Beadnell TC,Hackett PB。
先知。博士。Ilya Okulov (Libniiz-Institute furary Designer Techno- login – IWT) Dr. Yasmine Sassa (Chalmers University or Technology) Amir Malakizadi (Chalmers University or Technology) Prof. Dr. Alexor Matic (Chalmers University or Technology) Dr. Sfjetlana Stecovic (Link University) Prof. Dr. Kevin M. Ryan (University or Limerick) Prof. Dr. Piter加尔加拉(联邦大学或圣卡洛斯)教授桑德拉·卡瓦略(Coimbra大学)麦地娜·沙姆苏耶娃(Madina Shamsuyeva)博士(汉诺威的利布尼兹大学)教授尼古拉斯·阿隆索·范特(Nicolas Alonso Vante)博士(Poitiers the Poitiers) AB)Wim Theelans博士(Katholic University Leuven)Aline Rogue博士(Bordaux大学)DAMENTAL TOURRET(IMDEA材料研究所)博士。Annable Broad(Katholic University Leuven)Gonzalo Priceto博士(西班牙研究委员会CSIC - 理工大学或Valencia UPV)Maria Vara del Arco博士(Madrid大学)Giovanni Perotto博士(Intirition Italo Italo Italo这Tecnologia(IIT)(IIT))。ThomasWeißgarber(Fraunhofer Instituteförferigigung偷窃和Ange Walls Material forshung)MaríaVallet-Regí博士(大学计算机或马德里)博士。AndrésFabánLasagni(技术大学)Regina Ciancio博士(地区科学园)博士。 Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.))AndrésFabánLasagni(技术大学)Regina Ciancio博士(地区科学园)博士。Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.))Raquel Oro Calderon(维也纳技术大学)教授Laura M. Bartolo博士(芝加哥西北大学)Artur Erbe博士(Helmoltz- Zentrum drrest-Rossendorf E.V.)Konda Gokuldoss Prahanth(Tallinn技术大学)教授WillumeitRömer(Helmholtz Center在这里)JoaquínRams博士(Helmholtz Center)教授JoaquínRams博士(Rey Rey Juan Carlos大学)Ivan Kaban博士(技术 - 以色列技术学院)AntonioJesúsSalinasSánchez博士(Madrid大学) Österlund(Uppsala University)博士。 洛伦佐·莫罗尼(Lorenzo Moroni)教授(马斯特里赫特大学)教授罗伯特·伍德沃德(Robert Woodward)博士(维也纳大学)Pearl Agyakwa博士(诺丁汉大学) Kiran Gulia(Wolverhampton大学)Masiar Sistani博士(维也纳技术大学)Konda Gokuldoss Prahanth(Tallinn技术大学)教授WillumeitRömer(Helmholtz Center在这里)JoaquínRams博士(Helmholtz Center)教授JoaquínRams博士(Rey Rey Juan Carlos大学)Ivan Kaban博士(技术 - 以色列技术学院)AntonioJesúsSalinasSánchez博士(Madrid大学) Österlund(Uppsala University)博士。洛伦佐·莫罗尼(Lorenzo Moroni)教授(马斯特里赫特大学)教授罗伯特·伍德沃德(Robert Woodward)博士(维也纳大学)Pearl Agyakwa博士(诺丁汉大学) Kiran Gulia(Wolverhampton大学)Masiar Sistani博士(维也纳技术大学)