DNA是一个复杂的多分辨率分子,其理论研究是一个挑战。其内在的24多尺寸性质需要化学和量子物理学才能了解结构和25个量子信息学,以将其操作解释为完美的量子计算机。在这里,我们提出了26个DNA的理论结果,可以更好地描述其结构及其在遗传信息的传输,编码和解码中的操作过程27。芳香性通过28个相关电子和孔对的振荡谐振量子状态来解释,这是由于量化的29个分子振动能充当吸引力的。相关对在单个带𝜋-分子轨道(𝜋 -MO)中的氮基碱基中形成30个超电流。Mo Wave 31函数(φ)被认为是N组成原子轨道的线性组合。腺嘌呤(a)和胸腺氨酸(T)或鸟嘌呤(G)和胞嘧啶(C)之间的32个中央氢键像理想的约瑟夫森连接一样。正确描述了两个34个超导体之间约瑟夫森效应的方法,以及氮基碱的凝结到35,获得了形成量子的两个纠缠量子状态。将36个复合系统的量子状态与经典信息相结合,RNA聚合酶传递了四个钟形37个状态之一。DNA是一台完美的量子计算机。38
根据自由能原理,所有有知觉的生物都力求将意外或信息论量(即变分自由能)降到最低。因此,社会心理“压力”可以重新定义为“预期自由能增强”的状态,即“预期意外”或“不确定性”的状态。经历压力的个体主要试图借助所谓的不确定性解决程序 (URP) 来减少不确定性或预期自由能。URP 由三个子程序组成:首先,诱发唤醒状态,增加大脑信息传输和处理,以尽快减少不确定性。其次,这些额外的计算会消耗大脑从身体中获取的额外能量。第三,该程序控制学习哪些压力减轻措施以备将来使用,哪些压力减轻措施不学习。当 URP 成功减少不确定性时,我们将该事件称为“良好”压力。如果 URP 无法充分减少不确定性,则会导致压力习惯化或长期毒性压力。压力习惯化通过平缓/扩大个人目标信念来减少不确定性,从而使以前被认为无法维持的结果变得可以接受。习惯化的人会经历所谓的“可忍受”压力。根据自私大脑理论及其支持实验证据,我们表明,习惯化的人缺乏压力唤醒,因此平均大脑能量消耗减少,往往会发展出肥胖的 2 型糖尿病表型。对于那些习惯化不是自由能量最优解决方案的人来说,他们不会通过改变目标偏好来减少不确定性,只会承受“有毒”压力。有毒压力会导致反复或持续的唤醒状态,从而增加平均大脑能量消耗,进而促进瘦弱 2 型糖尿病表型的发展。总之,我们将压力的心理概念锚定在自由能量原理定义的信息论不确定性概念中。此外,我们详细介绍了不确定性减少背后的神经生物学机制,并说明了不确定性如何导致心身疾病。
机器学习 (ML) 研究在过去十年中取得了令人瞩目的成就,这证实了这样一个论点:只要有足够的计算能力和规模,几乎任何类型的任务都可以通过数据的统计相关性成功完成 [1、2、3、4]。然而,利用这种类型的计算似乎不足以解决人工智能 (AI) 研究仍然面临的两个障碍:(i)功能性:当前的 ML 模型缺乏实现抽象和概括的能力,例如,在不熟悉的环境中对图像进行分类,或者对分布外的数据进行预测 [5、6、7];(ii)技术性:ML 模型通常需要大量数据进行训练并消耗大量能量 [8]。在本文中,我们支持这样的主张,即通过利用我们掌握的关于大脑的知识,作为高效智能机器存在的证明,我们可以为 ML 提供洞察力
神经网络的设计受人脑的工作机制的启发,此后在各个领域取得了巨大的成功。心理学仍然旨在更好地了解人脑,但计算机科学努力增强对神经网络的理解。神经网络研究的主要目标是开发能够执行与人脑相似的任务,而不是重新创建它的模型。有趣的是,尽管没有明确设计为此目的,但神经网络倾向于表现出比预期的更像人类的行为。特别是,最近的发现表明,CNN可能表现出感知组织的格式塔定律的某些方面[1],这些方面解释了人脑如何解释复杂的视觉刺激,尽管可能会受到某些阈值和局限性的影响。先前探索的神经网络体系结构的狭窄范围,其数据集有限和实验不足,因此需要进行更详细的研究。我们关注的是闭合原理,该原理指出,当零件被遮挡或碎片时,人的大脑自然填补了将数字视为完整批发的空白。我们提出了一个专门设计的数据集,该数据集旨在检查各种基于心理的透视仪的关闭,并在广泛的CNN中进行实验,以研究其与该原则的一致性。我们的工作提供了有关CNN有关关闭的全面分析,确定了限制和阈值,这些限制和阈值定义了其在逐渐操纵的刺激类别上执行闭合时的可用性。
Baptiste Battelier 1 Jo¨el Berg´e 2 Andrea Bertoldi 1 Luc Blanchet 3 Kai Bongs 4 Philippe Bouyer 1 Claus Braxmaier 5 Davide Calonico 6 Pierre Fayet 7,8 Naceur Gaaloul 9 Christine Guerlin 10 Aur´elien Hees 11 Philippe Jetzer 12 Claus L¨ammerzahl 13 Steve Lecomte 14 Christophe Le Poncin-Lafitte 11 Sina Loriani 9 Gilles M´etris 15 Miquel Nofrarias 16 Ernst Rasel 9 Serge Reynaud 17 Manuel Rodrigues 2 Markus Rothacher 18 Albert Roura 19 Christophe Salomon 10 Stephan Schiller 20 Wolfgang P. Schleich 21 Christian舒伯特 22,23 卡洛斯·F·索普埃尔塔 24 菲奥多·索伦蒂诺 25 蒂莫西·J·萨姆纳 26 古列尔莫·M·蒂诺 27 菲利普·塔基 11 沃尔夫·冯·克利青 28 莉萨·沃纳 29 彼得·沃尔夫 11 马丁·泽兰 30
洗礼电池1·Joote Berg´e 2·Andrea Bertoldi 1·Luc Blanchet 3·Kai Bongs 4·Philippe Bouyer 1·Claus Brammaier 5·Davide Calonico 6 Jetzer 12·Claus L'Amammerzahl 13·Steve Lecomte 14·Christophe le pucin-lafutte 11·Sina Loriani 9·Gilles M´etris 15·Miquel Naprarias 16·Miquel Naprarias 16·r raseL 9·renst rasel 9·Serge reynaud 17·艾尔纳德(Reynaud 17) 19 · Christophe Salomon 10 · Stephan Schiller 20 · Wolfgang P. Schleich 21 · Christian Schubert 22.23 · Carlos F. Sopuerta 24 · Fiodor Sorrentino 25 · Timothy J. Sumner 26 · Guglielmo M. Tino 27 · Philip Tuckey 11 · Wolf von Klitzing 28 ·丽莎·沃恩
本文旨在确定构造原理在(能源)生产系统热经济学领域的结果。该原理最近被表述为最大熵生产原理的扩展,并在文献中用于解释所有类型的流动系统的形状和结构。首先,热经济环境的概念与环境资源的消耗和残余排放一致,这本身就是每种生产系统的特征。这种方法可以推断出任何能源系统的演变都与热经济环境中资源的开发密切相关。此外,广泛接受的假设是必须通过最小化产品的特定资源(能量)成本来优化能源系统,这必须被视为物理原理的结果,该物理原理告诉我们哪些能源系统可以持续存在(生存),哪些其他系统将被选择灭绝。本文展示了如何通过创建循环来降低产品的单位能量成本,使由生产过程及其供应链组成的宏观系统更加可持续地运行,符合构造原理。最后,热经济环境的定义(至少在原则上)允许正确识别直接在环境中处理残留物和副产品的资源(能量)成本,而无需任何额外操作。因此,残留物和副产品通常必须通过不同的(新)生产过程转化为某种产品,支持循环经济的范式,并强调循环不仅对系统效率而且对系统生存都很重要。更一般地说,所获得的结果可以看作是自然和人工(能源)生产系统中可以观察到的越来越复杂和高度循环的进化趋势的物理依据。
洗礼电池1·Joote Berg´e 2·Andrea Bertoldi 1·Luc Blanchet 3·Kai Bongs 4·Philippe Bouyer 1·Claus brammaier 5·Davide Calonico 6 Claus l'Amammerzahl 13·史蒂夫·莱科特(Steve Lecomte)14·Christophe le pucin-lafutte 11·Sina Loriani 9·gilles M´etris 15·Miquel Naprarias 16·Miquel Naprarias 16·rasel rasel 9·Ernst Rasel 9·Serge Reynaud 17·Manuel Rodrigues 2·萨洛姆·萨洛姆·萨尔特(Manuel Rodrigues 2斯蒂芬·席勒(Stephan Schiller)20·沃尔夫冈·施莱希(Wolfgang P. Schleich
摘要:建立CRISPR/CAS9(群集的定期间隔短的短文重复序列/CRISPR相关蛋白9)用于真核基因编辑的技术,不仅为分析基因功能开辟了新的途径,还为治疗干预提供了新的途径。虽然最初的方法允许靶向基因破坏,但最新的技术进步产生了各种各样的工具,以各种方式修改基因和基因表达。目前,这项技术的临床应用不超过期望,这主要是由于将CRISPR/CAS9组件的有效且安全地交付给生物体。靶向的治疗核酸和蛋白质的靶向体内递送在技术上仍然具有挑战性,例如,通过不必要的脱靶效应,免疫反应,毒性或快速降解转移车辆的进一步局限性。一种可能克服这些限制的方法采用细胞外囊泡作为细胞间递送装置。在这篇综述中,我们首先介绍了CRISPR/CAS9系统及其最新进步,概述主要应用程序,并使用外泌体或微泡列出将CRISPR/CAS9成分运送到真核生物细胞中的当前最先进的技术状态。