摘要 散发性克雅氏病 (sCJD) 是一种传染性脑蛋白病。目前主要有五种临床病理亚型 (sCJD-MM(V)1、-MM(V)2C、-MV2K、-VV1 和 -VV2)。组织病理学证据表明,朊病毒聚集体和海绵状病变的定位因亚型而异。确定是否存在可检测成像异常的初始部位(震中)以及病变扩散的顺序将有助于疾病的早期诊断、患者分期、管理和临床试验招募。扩散磁共振成像 (MRI) 是检测海绵状变性最常用和最敏感的测试。本研究旨在使用弥散加权图像 (DWI) 在已知最大的经尸检证实的 sCJD 患者横断面数据集中首次在体内识别脑内亚型依赖性震中和病变传播。我们使用基于事件的建模(一种成熟的数据驱动技术)通过横断面 DWI 估计病变传播。1 名不知诊断的神经放射科医生对 594 名经尸检诊断的受试者(448 名 sCJD 患者)的 12 个大脑区域的 DWI 异常进行评分。我们使用基于事件的模型重建了五种纯亚型中病变传播的顺序。151 名患者的随访数据验证了估计的序列。结果表明,病变传播的中心和顺序是亚型特异性的。两种最常见的亚型(-MM1 和 -VV2)显示出相反的 DWI 异常出现顺序:分别从新皮质到皮质下区域,反之亦然。楔前叶也是 -MM2 和 -VV1 中最有可能的中心,尽管与 -MM1 不同,在扣带回和岛叶皮质中也检测到了早期异常信号。-MV2K 中复制了表征 -VV2 的病变传播尾部-喙部序列。这些数据驱动模型结合起来,提供了前所未有的动态洞察,可以洞察病理过程开始和传播时亚型特异性中心,这也可能增强早期诊断并实现 sCJD 的疾病分期。
摘要:这项回顾性研究报告了有关局部清创术与Perossal®相结合的慢性骨髓炎的报道。在所有病例中均可证实慢性骨髓炎的诊断,并根据CIERNY-MADER(C-M)分类进行分类。主要结果是在手术后至少一年后消除感染。总共包括93例患者(中位年龄:40岁)。最多的地点是股骨(24,25.8%)和胫骨(52,55.9%)。26名患者(28.0%)患有显着的局部或系统合并症(C-M类宿主)。根据解剖类型,31例是I型,13型II型,21型III和28型IV。在大多数情况下,将万古霉素添加到Perossal®(80,86.0%)。在24例(25.8%)中,合并了万古霉素和利福平。 在32例(34.4%)的情况下,术中培养物为阴性。 在39例(63.9%)患者中分离金黄色葡萄球菌,并在12例中分离革兰氏阴性细菌。 中位随访时间为21个月(范围12-84)。 在中位随访11个月后,总共21例(22.6%)患者出现了感染复发(IR)(范围:1-47)。 Perossal®与其他骨无效填充剂相比,具有几个实际的优势。 因此,由于其良好的生物相容性和舒适的抗生素释放,它代表了慢性骨髓炎的可行辅助治疗。在24例(25.8%)中,合并了万古霉素和利福平。在32例(34.4%)的情况下,术中培养物为阴性。在39例(63.9%)患者中分离金黄色葡萄球菌,并在12例中分离革兰氏阴性细菌。中位随访时间为21个月(范围12-84)。在中位随访11个月后,总共21例(22.6%)患者出现了感染复发(IR)(范围:1-47)。Perossal®与其他骨无效填充剂相比,具有几个实际的优势。因此,由于其良好的生物相容性和舒适的抗生素释放,它代表了慢性骨髓炎的可行辅助治疗。
散发性克鲁特兹菲尔德 - 贾科布疾病(SCJD)是最常见的人类prion病,当时会发生细胞prion蛋白(PRP C)自发地折叠并聚集成prion族原纤维,导致致命的Neu rodegeneration中的原因。在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。 STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。 在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。 接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期
摘要 许多 COVID-19“疫苗”被视为生物武器,已知具有引发朊病毒病的能力。朊病毒诱导剂已被广泛研究为潜在的生物武器,而秘密生物武器特工渗透到朊病毒研究领域。为了使朊病毒病诱导剂成为理想的生物武器,目标人群需要相信这种疾病无法治愈,而攻击者知道一种治疗方法/解毒剂,以便在发生“反击”时拯救自己的人口,即攻击者的人口暴露于生物武器。朊病毒领域的说法是,目前没有有效的治疗朊病毒病的方法。然而,在当前的 COVID-19 相关生物武器攻击中,虚假叙述是常态。作者进行了文献检索,以确定是否存在任何对 COVID“疫苗”诱发的朊病毒病的有效治疗方法,但这些方法对公众隐瞒了。作者认为可能存在几种这样的候选药物,需要探索它们在治疗 COVID“疫苗”诱发的朊病毒疾病中的用途。这些药物包括强力霉素和相关的米诺环素、奎纳克林和伊维菌素。本文的性质在很大程度上是推测性的,因为在当前的内战中使用了生物武器。许多人并不惊讶,在政府、医学、科学和制药行业工作的人故意试图造成伤害,同时假装帮助人类。人们只需阅读与摩萨德特工杰弗里·爱泼斯坦有关的一长串有影响力的人物名单,就能意识到当今世界的邪恶程度。
Creutzfeldt-Jakob疾病(CJD)是一种罕见的,致命的,快速进行性神经退行性疾病,是由于错误折叠的Prion蛋白(PRP)的积累而引起的。cjd每年有1-2个新人每百万个新人,零星类型占这些案件的90%。尽管发病时的中位年龄和疾病持续时间因零星CJD(SCJD)的亚型而有所不同,但该疾病通常会影响中年中位生存期为4-6个月的中年人。SCJD极为罕见。在这里,我们提出了一名21岁的女性,她因零星的prion病而死亡。她出现了精神病症状,随后是迅速进行的神经认知和运动衰落。eeg对周期性的锋利波复合物为阴性;然而,大脑MRI暗示着病毒疾病。脑脊液(CSF)实时Quaking诱导的转化率(RT-QUIC)测定不确定。尸检时的神经病理学检查显示出严重的神经元丧失和神经胶质性,继发性白质变性,但通过免疫组织化学中的小脑和新皮层中的海绵状变化和PRP沉积物最小。在Prion蛋白基因(PRNP)的密码子129上缺乏致病性突变和蛋氨酸/丝氨酸杂合性,这是不足或表现出通过蛋白质印度印度印度印度布局分析的二糖基化PRP同工型的占代表性不足的不足或表现出无需获得Prion疾病的疾病诊断而导致的PRION疾病诊断的diglycosylated PRP同种型。非常年轻的发作SCJD通常具有非典型的临床表现和疾病进展,神经病理检查结果和/或实验室测试结果可能会混淆诊断。进行彻底,全面的评估以进行准确的诊断至关重要,其中包括与组织学,prion蛋白分类和prion基因测序确定的尸检确定。
sonia vallabh:我发现自己有死于遗传prion病的风险后,我从律师做生物医学研究。prion病并不是超稀有的,因为它杀死了6,000人中有1人,但很少见。我帮助建立了临床前的概念证明,该证明已导致了一项第1/2试验,以评估胸前施用的离子-717的安全性,耐受性和药代动力学对prion病患者。ion-717是由Ionis Pharma-Ceuticals开发的研究反义寡核苷酸,旨在抑制prion蛋白的生产。截至目前,世界各地有16个ION-717临床试验地点。这项试验非常迅速,因为这是一个非常活跃的社区,它将出现。我认为我的工作是在整个神经竞技范围内进行早期治疗的运动,因为您越早到达那里,您可以做的越多。我们可能会在2025年底之前看到第一个数据。
参考•Caughey B,男爵GS。王室及其犯罪的伴侣。自然。2006年OCT19; 443(7113):803-10。 doi:10.1038/nature05294。 引用于PubMed(https://pubmed.ncbi.n lm.nih.gov/17051207)•Collinger J. Prion病的分子神经病学。 j Neurol Neurosurgpsphysyiartry。 2005 Jul; 76(7):906-19。 doi:10.1136/jnnp.2004.048660。 PubMed(https://pubmed.ncbi.nlm.nih.gov/15965195)或PubMed Central上的免费文章(https://www.ncbi.nlm.nlm.nih.gov/pmc/pmc/pmc/pmc1739714/)基因密码子129调节神经系统威尔逊病的临床过程。 NeuroReport。 2006年4月3日; 17(5):549-52。 doi:10.1097/01.wnr.0000209006.48105.90。 引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/16543824)•harris da,true HL。 对prion结构和毒性的新见解。 Neuron.2006 5月4日; 50(3):353-7。 doi:10.1016/j.neuron.2006.04.020。 PubMed引用(https://pubm2006年OCT19; 443(7113):803-10。 doi:10.1038/nature05294。引用于PubMed(https://pubmed.ncbi.n lm.nih.gov/17051207)•Collinger J. Prion病的分子神经病学。j Neurol Neurosurgpsphysyiartry。2005 Jul; 76(7):906-19。 doi:10.1136/jnnp.2004.048660。PubMed(https://pubmed.ncbi.nlm.nih.gov/15965195)或PubMed Central上的免费文章(https://www.ncbi.nlm.nlm.nih.gov/pmc/pmc/pmc/pmc1739714/)基因密码子129调节神经系统威尔逊病的临床过程。NeuroReport。2006年4月3日; 17(5):549-52。 doi:10.1097/01.wnr.0000209006.48105.90。引用于PubMed(https://pubmed.ncbi.nlm.nih.gov/16543824)•harris da,true HL。对prion结构和毒性的新见解。Neuron.2006 5月4日; 50(3):353-7。 doi:10.1016/j.neuron.2006.04.020。PubMed引用(https://pubm
prion疾病,例如人类中的克鲁特兹菲尔特 - 贾科布疾病(CJD),是由神经变性的致命和可传染性疾病。传染剂由prion蛋白的错误折叠形式组成,这些蛋白质形成大脑中不溶性骨料。prions可以通过模板对正常形式的蛋白质的错误折叠来传播。此过程主要发生在大脑,脊髓和一些相关组织,包括颅神经和神经节,后眼和垂体。人们通过涉及污染神经外科工具的医学或外科手术以及通过刺穿皮肤的损伤,同时处理高风险材料(例如,脑组织)的伤害感染了病毒[2]。生物流体和外围组织的感染性滴度低,因此占据王室的风险较低[3-5]。
尽管近年来分子医学实践取得了巨大进步——反义寡核苷酸 (ASO) 疗法和首个基于 CRISPR 的疗法的获批就是明证——但神经退行性疾病,如朊病毒病、亨廷顿氏病、阿尔茨海默氏病和帕金森氏病,仍然是一项艰巨的挑战。有毒蛋白质聚集与神经退行性疾病有关,这表明基因沉默是一种广泛适用的治疗策略。尽管 ASO 和基于 CRISPR 的沉默具有抑制致病蛋白表达的潜力,但努力尚未成功。在本期第 1421 页,Neumann 等人。( 1 ) 报道了一种新的表观遗传编辑器,可以抑制小鼠大脑中朊病毒蛋白 (PrP) 的表达,为治疗神经退行性疾病提供了一种新方法。
需要一种多学科的方法来评估CWD和Prion疾病科学,监视和管理的现状。这需要确定溢出准备的差距,并提出了提高公共和动物健康机构反应能力的建议。传染病研究与政策中心(CIDRAP)确定了CWD预防和控制中的五个关键领域:人类健康,子宫颈和生产动物健康,病毒生物学和疾病诊断,尸体和受污染的物品处置以及环境以及环境以及野生动植物健康与管理。cidrap召集了五个工作组,每个工作组由两个联合主席领导,他们是各自领域的杰出专家,由57位其他主题专家组成。在本报告中,我们从工作组会议中传达了输出,并按主题领域总结了关键发现。