摘要:二维(2D)rhenium disulfer(RES 2)的优质光学和电子特性使其适用于纳米电子和光电子应用。然而,内部缺陷以及Res 2的低迁移率和吸收能力阻碍了其在高性能光电探测器中的利用。制造混合型杂界是设计高性能混合光电探测器的替代方法。本研究提出了一个混合维范德华(VDW)杂音杂音光电探测器,其中包含高性能的一维(1D)P-Type Thilurium(TE)和2D N-Type Res 2,使用Dry Cression使用Dry Cransel Mage在Res 2 Nano-lope上沉积在Res 2 nano inanowires上而开发的。由于在RES 2和TE界面形成的II型P -n异质结,它可以改善光激发电子 - 孔对的注入和分离效率。提出的异质结构设备对可见光灵敏度(632 nm)敏感,具有超快的光响应(5 ms)(5 ms),高响应性(180 a/w)和特定的检测率(10 9),其优于Pristine te和Res 2 PhotododeTectors。与RES 2设备相比,响应速度和响应速度通过数量级更好。这些结果证明了TE/RES 2混合差异的制造和应用潜力,用于高性能光电设备和传感器。关键字:光电探测器,可见光,光响应率,Res 2纳米环,TE纳米线,范德华瓦尔斯异质结
图2将Ni原子插入石墨烯晶格。a-b)HAADF-STEM图像显示了两个不同的宏伟概述的样品概述,显示了石墨烯表面形成的3-5 nm ni岛。在Ni岛之间还观察到单个Ni原子。c)石墨烯表面上的ni岛,经Ni L 23鳗鱼核心损失边缘证实。d- e)说明了梁拖动技术,其中电子束位于源材料上(d中的红色箭头的尾巴)),并拖动到原始的石墨烯(d中的红色箭头头))。此过程在ni原子附加到的石墨烯中创建点缺陷时,吐出了Ni源原子。iNSET在e)中显示了带有原子模型覆盖的主HAADF-STEM图像的傅立叶过滤版本,显示了Ni原子的位置。Ni原子位置表示单个和DI-VACACES的职业。f)几分钟的电子束暴露后,掺杂剂的较高分辨率图像。观察到的结构的原子模型被覆盖。g)-i)通过在Ni岛和原始石墨烯上扫描电子束来插入Ni原子的一个例子。最初,石墨烯的斑块没有掺杂剂;由于产生缺陷并将Ni原子从相邻的Ni岛散射到石墨烯上,Ni原子附着在缺陷位点上并掺入晶格中。随着越来越多的C原子从晶格中敲打,孔开始形成,Ni原子装饰边缘,i)。图像E-F)和H-I)使用PyCroscopicy中的原理分析过滤。60,61
迫切需要有效的储能设备,对金属离子电池的研究和开发有希望的阳极材料非常关注。通过密度功能研究,我们首次成功地预测了P 3 S和C 3 S单层的电化学性能,可以在碱金属(LI,LI,NA和K)电池中使用。我们的研究研究了原始的单层能量,动力和热稳定性。原始纳米片的电子结构表现出宽间隙的半导体。单层上的单个金属化后,复合系统变为金属。电荷密度差(CDD)分析表明,电荷转移是从碱金属原子到P 3 S和C 3 S单层的,而Bader电荷分析量化了电荷转移量。我们已经分析了2D结构中单个Adatom扩散的容易分散。一个例子是k上k的扩散,c 3 s的较低屏障值为0.06 eV,并且似乎无障碍物。此外,我们预测的复合系统报告了相当大的理论存储能力(C);例如,六边形K adsorbed C 3 s显示存储容量为1182.79 mA h g -1。估计的开路电压(OCV)值表明C 3 S单层有望用于LI-,Na-和K-ION电池的阳极材料,而P 3 S单层单层适合作为LI-,Na-和K-ion电池的阴极材料。
第一个石墨烯具有商业化高级纳米材料的良好记录。该公司开发了一种电化学工艺,可实现吨位尺度的制造原始的,高度敏感的石墨烯,其典型厚度为5-10个碳层。这些具有很高的纯度,其总金属不到0.3%,较少每百万个硅污染物。通过使用复杂的整理步骤,可以仔细控制纳米板的外侧尺寸(称为Puregraph®),至5 µm,10 µm和20 µm。这些可用于显着增强油漆,涂料,聚合物和复合材料的机械,热和电气性能。
摘要 随着基于忆阻技术的内存计算系统的迅速兴起,将此类内存设备集成到大规模架构中是需要解决的主要问题之一。在本文中,我们研究了基于 HfO 2 的忆阻设备在大规模 CMOS 系统(即 200 毫米晶圆)中的集成。分析了单金属-绝缘体-金属设备的直流特性,同时考虑了设备间的差异和开关特性。此外,还分析了样品原始状态下漏电流水平的分布,并将其与被测设备中未成形的忆阻器数量相关联。最后,将得到的结果拟合到基于物理的紧凑模型中,从而可以将其集成到更大规模的模拟环境中。
the voltage difference (ΔE) is 0.348 V. The Ni 2+ /Ni 4+ anodic and cathodic peaks of the Mo/F-2 sample correspond to 4.879 V and 4.578 V, respectively, and the ΔE value is 0.301 V. Typically, the potential difference (ΔE) between the anode peak and the cathode peak reflects the electrochemical polarization [47].MO/F-2样品的ΔE值小于原始样品,表明MO/F-2样品中的锂插入/提取动力学更快。结果与上述速率性能测试结果一致,表明适当量的MO-F共同掺杂可以帮助减少极化,从而提高LNMO材料的速率能力。
南澳大利亚州的水资源是该州经济和社会福祉的基础。水资源是我们自然资源不可或缺的一部分。在原始或未开发的情况下,水资源的状况反映了降雨、植被和其他物理参数之间的平衡。地表水和地下水资源的开发改变了自然平衡并导致退化。如果退化程度较小,并且资源保留其效用,社区可能会认为这些变化是可以接受的。然而,巨大的压力会影响资源继续满足用户和环境需求的能力。退化也可能非常缓慢,需要几年时间才能显现出来,给人一种虚假的安全感。
NACO75分别为3.85 V和3.9 V。但是,当在3-5.5 V范围内进行环状伏安法(CV)测试时(补充图11c),清楚地证明,LACO75和NACO75的氧化电流都在第一个周期后迅速减少,这意味着在高氧化潜力下产生了钝化层以防止进一步的分解。通过X射线光电子光谱(XPS)分析和密度功能理论(DFT)计算探测了该钝化层的组成。如补充图11d,比较原始和带电的LACO75-LINI 0.6 CO 0.2 Mn 0.2 O 2(NCM622)复合阴极的XPS光谱,LACO75的O 1S峰强度为