摘要 MXenes 吸引了方法和技术领域的研究人员,他们将其应用于各种应用,例如储能设备、超级电容器 (SC) 和弹性电池。由于其出色的自动化、物理化学、光学、电气和电化学效应,原始 MXenes 及其纳米材料在多种类型的 SC 中的应用正在不断增加。由于其出色的电气性能、更好的机械强度、不同的实用簇和充足的层间空间,MXene 基纳米材料 (NM) 已展示出强大的储能能力。在这篇评论文章中,我们展示了 MXene 基纳米材料 (NM) 在超级电容器 (SC) 中的合成方法和应用的时间表和进展。最后,我们以该领域的未来展望结束了主题。
摘要 - 辅助成像是一种有希望的Labelfree超分辨率成像技术。其性能受到微球的光子纳米夹(PNJ)的显着影响。最近,一种新型的曲线PNJ,即发现了光子钩(pH),这显示出各种应用的有希望的潜力。这封信提出了一种利用Janus Microspheres产生的PHS的对比增强的超分辨率成像技术。我们证明了可以使用一个步骤的沉积过程来制造Janus微球,它们表现出与原始微球相比的成像性能,并且可以通过更改涂层厚度来轻松调节其视野和成像对比度。此外,我们证明了Janus微球的成像对比度可以通过使用极化照明进一步增强。
捕获离子为量子计算和模拟提供了一个原始平台,但提高它们的相干性仍然是一个关键挑战。在这里,我们提出并分析了一种新策略,通过参数放大离子的运动来增强捕获离子系统中的相干相互作用——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及它如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展捕获离子量子计算的重要组成部分。我们的研究结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
拟议项目的总体目的是建立一个最先进的环境微生物学和生物技术中心(磁铁),用于利用旨在:(a)为土壤遗传资源的习惯,存储和表征的可靠设施,以及(b)使这些资源可用于整个科学社区和政策社区和政策社区。为了实现这一目标,拟议的基础设施中心将结合,整合和验证一系列现有的先进技术,方法和方法,这些技术,方法和方法是:(i)来自原始和农业生态系统的土壤,土壤微生物(纯净培养和DNA)的广泛采样,储存和保存; (ii)高通量测序和表型筛选; (iii)将基因组和土壤卫星信息数据与生态系统集成的信息系统以及(iv)对特定微生物接种物的评估,明确致力于塞浦路斯农业。
明确研究了直径 400 μ m 的中子辐照 (NI) GaN 肖特基势垒二极管 (SBD) 的温度相关电特性。根据 CV 测量,与原始样品相比,NI 二极管的电子浓度明显下降,表明存在热增强载流子去除效应。中子辐照会导致明显的肖特基势垒高度不均匀性,这可以通过双势垒模型进行研究。数据表明,中子辐照会对漏电流以及低频噪声水平产生微小但可测量的抑制。尽管发现了新的深能级陷阱,但温度相关的电学结果表明 GaN SBD 具有出色的抗中子辐照性能和在极端工作温度下的稳定性。
摘要 多功能器件对于在同一平台上的集成和小型化具有重要意义,但简单地添加功能会导致器件过大。在这里,基于二维 (2D) 玻璃状石墨烯开发了光电检测和化学传感器件,该器件满足两种功能的类似特性要求。与原始石墨烯相比,扭曲的晶格结构产生的适当带隙使玻璃状石墨烯表现出相当甚至更好的光电检测和化学传感能力。由于玻璃状石墨烯与周围大气之间的强相互作用,这些器件对光诱导解吸的敏感度低于基于石墨烯的器件。因此,少层玻璃状石墨烯器件提供正光响应,响应度为 0.22 AW