硕士论文 15学分 专业:管理控制 乌普萨拉大学 商务研究系 2023年春季学期 提交日期:2023-05-30
糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
缺乏有关组织,器官和系统的性质的基本信息,从而阻碍了手术植入物材料的发展。材料的生活系统的特性在很大程度上是在组织力学的标题下进行的,往往比定量更具描述性。在现代手术植入物时代的早期,这种缺陷并不重要。然而,随着植入物继续改善,使用更长的使用寿命和更高的可靠性,无法预测植入的制造材料的行为已经表明,在健康或疾病中,相对缺乏对支持或宿主系统的材料特性的知识。在更传统的工程实践中,这种情况是不可接受的:航空和海洋应用的新设计的成功取决于对服务环境的详细,纪律和定量知识,包括将遇到和与之互动的材料的属性。因此,对海冰的无数物理特性的了解使破冰船的设计和开发无需反复试验。相比之下,新的外科植入物(结合新材料)的开发期可能超过十年,即使这样,只能做出短期绩效预测。是否可以构建制造材料和生物组织和流体的适当材料的足够数据库,以便可以在体内服务之前使用体外模拟来验证未来的植入物设计?虽然没有明显的智力障碍来实现这样的目标,但考虑到制造材料与生活系统之间可能相互作用的复杂性,它显然在遥远的将来。然而,大量数据积累了有关植入材料,天然组织和流体的材料方面的积累。不幸的是,这些数据广泛分布在多种形式的公开形式中,并从不同程度的准确性和精确度的实验观察中获得。这是一种与这种情况非常相似的情况
该法案提供了一个机会,可以试行一个深思熟虑、公平公正的全电动未来过渡,通过提供零排放改进,包括为建筑物提供先进的热泵“闭环”技术,同时引导负责任的公用事业投资以限制未来的费率上涨并支持受影响的工人。社区规模的脱碳模式是为住宅和商业建筑通电的最有效方式,特别是对于无法自行升级电器的低收入家庭和小型企业。这也是在我们的能源系统转型中创造和维持高路边工作岗位的最佳方式。
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
•Cross-NOAA line office partnership •Develop national infrastructure to enhance NOAA's climate modeling and forecasting capabilities in support of the nation's living marine resources •Extend Earth System components developed/applied at global scale to regional scales •Stakeholder engagement (e.g.NOAA Sanctuaries, NOAA Fisheries) •Data and products from CEFI will ultimately assist resource managers, coastal communities, and other stakeholders • CEFI: https://www.fisheries.noaa.gov/topic/climate-change/climate,-ecosystems,-and -fisheries
随着世界人口的增长,对可持续食品来源的需求增加,水产养殖,水生生物的耕种已成为一个关键行业。将生物技术整合到水产养殖中代表了一种新的边界,提供了创新的解决方案,以提高生产力,可持续性和环境管理。本文探讨了生物技术的进步如何改变水产养殖,应对挑战,并为更具弹性和高效的海鲜供应链铺平道路。生物技术正在迅速将水产养殖转变为更可持续和有效的行业。通过利用基因工程,选择性育种以及疫苗和益生菌等先进的疾病管理技术,水产养殖者可以提高养殖物种的健康和生产力。用藻类和植物性蛋白等替代品优化营养可以减少对野生鱼类储备的依赖,从而促进循环经济。生物修复通过处理废水和最小化污染物,进一步确保环境责任,从而增强了水产养殖在可持续粮食生产中的作用。
大肠杆菌细胞能够适应高渗透压,尽管在这些条件下生长会减慢。当细胞转移到较高的渗透压时,它们会瞬时停止生长。然后,在滞后后,他们恢复增长,增加了两倍的时间。在上一篇论文中,我们报告说,在37°C的最小培养基中,在几分钟内触发了从300到1,500 MOSM的渗透升级,几个代谢性干扰(可以汇总(23),如下所示。(i)细胞生长停止50至60分钟:渗透转移越大,生长恢复前的滞后持续时间越长。(ii)TRK系统的K+运输立即打开(24),以便在40至50分钟内蜂窝K+含量增加了100%。(iii)净蛋白和DNA合成和细胞分裂暂时停止40至50分钟。这些结果引起的问题是,诸如渗透升高之类的环境应力因素是否会引起一组特定的蛋白质,热休克和氧化应激也是如此。不同的微生物对渗透转移的反应(例如,大杆菌的降档;蓝细菌的降档以及革兰氏阳性和革兰氏阴性阴性的肉芽杆菌)似乎对蛋白质合成的载量修饰,这是由bidimentimentials electimentialsectimentialsectimentional prophtimentials prophentic蛋白蛋白质分析所表明的。到目前为止,这些反应还没有显示出明显的共同点。虽然卤菌物仅增加了在中等渗透压降低时增加几种热激蛋白的合成(8),但氰基细菌增加了几种热休克蛋白和盐应激特异性蛋白的合成,并抑制了一些其他对渗透量的响应的蛋白质的合成(3)。在枯草芽孢杆菌中,一般应激蛋白和特定蛋白质的合成也已被证明是通过渗透性升级刺激的(13)。在大肠杆菌中检测到了三种渗透升级诱导的蛋白质(7);它们被认为既不是热休克蛋白也不是一般应激蛋白,而是参与寡糖代谢的酶(16),也可能是由普鲁操纵子编码的BETAINE转运系统的成分(2,6)。本报告的重点是DNAK蛋白,DNAK蛋白是蛋白质热休克组的成员(12,25),被认为可以调节大肠杆菌(30)中的热休克反应,并可能参与(i)染色体(28),X partiophage(X),X细菌噬菌体(1,20,32),和P1 p1 plasmid(31)plastipation(33)(31)
