1引言生成建模在机器学习和人工智能领域起着重要作用,因为它提供了一种能够理解,解释以及在我们数据丰富世界中存在的复杂模式的功能工具包。通过将概率理论作为捕获给定数据集中固有不确定性的原则方法,这些模型旨在近似负责生成数据的基础分布或随机过程。因此,概率生成模型具有解决各种问题的潜力,包括生成新的数据示例,进行观察给出的推理,估计事件的可能性以及有关不确定信息的推理。但是,从数据中学习分布是一个挑战问题,通常需要在建模灵活性和概率推断的障碍之间进行权衡。早期生成模型的优先级优先考虑可牵引推理,通常是通过图形模型的形式将概率结构施加在random变量上[Koller and Friedman,2009]。因此,他们缺乏对复杂分布进行建模的挠性。自那以后,提出的可进行的概率模型(TPM)的领域随后发生了,并提出了端流的参数化和学习范式,从而在概率电路的统一概念下产生了广泛而流行的模型类别。从障碍性的角度设计,这些模型可以有效地推断和精确的概率推理,使其适合于要求快速准确计算的任务。但是,
成本分析,也称为资源使用分析,是寻找程序总成本的界限,并且是静态分析中的一个良好问题。在这项工作中,我们考虑了概率计划的成本分析中的两个经典定量问题。第一个问题是找到该计划的预期总成本的约束。这是该程序资源使用情况的自然措施,也可以直接应用于平均案例运行时分析。第二个问题要求尾巴绑定,即给定阈值𝑡目标是找到概率结合的概率,以便p [总成本≥𝑡]≤。直观地,给定资源的阈值𝑡,问题是要找到总成本超过此阈值的可能性。首先,对于预期范围,先前关于成本分析的工作的主要障碍是他们只能处理非负成本或有限的可变更新。相比之下,我们提供了标准成本标准概念的新变体,使我们能够找到一类具有一般正面或负成本的程序的期望范围,并且对可变更新无限制。更具体地说,只要沿着每条路径所产生的总成本下降,我们的方法就适用。第二,对于尾巴界,所有以前的方法都仅限于预期总成本有限的程序。具体来说,这使我们能够获得几乎无法终止的程序的运行时尾界。最后,我们提供了实验结果,表明我们的方法可以解决以前方法无法实现的实例。相比之下,我们提出了一种新颖的方法,基于我们基于Martingale的预期界限与定量安全分析的结合,以获取解决尾巴绑定问题的解决方案,该问题甚至适用于具有无限预期成本的程序。总而言之,我们提供了基于Martingale的成本分析和定量安全分析的新型组合,该组合能够找到概率计划的期望和尾巴成本范围,而无需限制非负成本,有限的更新或预期总成本的有限性。
生成的AI模型,例如稳定的扩散,DALL-E和MIDJOURNEY,最近引起了广泛的关注,因为它们可以通过学习复杂,高维图像数据的分布来产生高质量的合成图像。这些模型现在正在适用于医学和神经影像学数据,其中基于AI的任务(例如诊断分类和预测性建模)通常使用深度学习方法,例如卷积神经网络(CNNS)和视觉变形金刚(VITS)(VITS),并具有可解释性的增强性。在我们的研究中,我们训练了潜在扩散模型(LDM)和deno的扩散概率模型(DDPM),专门生成合成扩散张量张量成像(DTI)地图。我们开发了通过对实际3D DTI扫描进行训练以及使用最大平均差异(MMD)和多规模结构相似性指数(MS-SSSIM)评估合成数据的现实主义和多样性来生成平均扩散率的合成DTI图。我们还通过培训真实和合成DTI的组合来评估基于3D CNN的性别分类器的性能,以检查在培训期间添加合成扫描时的性能是否有所提高,作为数据增强形式。我们的方法有效地产生了现实和多样化的合成数据,有助于为神经科学研究和临床诊断创建可解释的AI驱动图。
本文考虑了通过随机树的产生来考虑普通差异方程式(ODES)解决方案的概率表示。我们在方程系数上介绍了足够的条件,以确保在此表示中使用的随机树的功能的集成性和统一性,并对其爆炸时间产生定量估计。这些条件依赖于控制随机树生长的标记分支过程的分析,其中标记可以解释为种群遗传学模型中的突变类型。我们还展示了分支过程爆炸是如何连接到ODE解决方案的存在和独特性的。
因此,这种随机边缘着色在没有单色k -clique的情况下产生着色的可能性> 0,因此必须存在这种着色。表明r k <2 2 k我们可以通过归纳论证进行。将r a,b定义为最小n,使得N顶点上完整图的任何2个色(例如红色和蓝色)具有至少A的单色红色集团,或者至少具有至少B的单色蓝色集团。首先观察到r a,b = r b,a,通过对称性和r 1,k = 1,因为所有着色都有红色的1片(因为这甚至不涉及任何红色边缘)。考虑在n = 1 + r a-1,b + r a,b-1顶点上的图2颜色。修复一个顶点V,让S r表示通过红色边缘连接到V的顶点的子集,而S B表示通过蓝色边缘连接到V的顶点的子集。构造,| S R | + | S B | + 1 = n = 1 + r a - 1,b + r a,b - 1,因此| S R | ≥ra -1,b或| S B | ≥ra,b -1。在| S R | ≥ra -1,b,要么S r具有大小B的蓝色集团,要么是大小A -1的红色集团,其顶点均通过红色边缘连接到V,在这种情况下,该图具有大小a的红色库。在| S B | ≥ra,b -1。因此,我们表明
描述 在网络荟萃分析中实现一种新颖的频率学派方法,以生成临床相关的治疗层次结构。该方法基于治疗选择标准 (TCC) 和概率排名模型,如 Evrenoglou 等人所述。 (2024) < DOI:10.48550/arXiv.2406.10612 >。TCC 使用基于最小临床重要差异的规则来定义。使用定义的 TCC,首先将研究级数据(即治疗效果和标准误差)转换成偏好格式,指示治疗偏好(例如,治疗 A > 治疗 B)或平局(治疗 A = 治疗 B)。然后使用概率排名模型合成偏好数据,该模型估计每种治疗的潜在能力参数并生成最终的治疗层次结构。此参数表示每种治疗方法胜过网络中所有其他竞争治疗方法的能力。因此,能力评估值越大,排名就越高。
这项研究通过利用多种优化策略的互补优势来研究杂交元启发式算法增强概率神经网络(PNN)训练的潜力。传统的学习方法,例如基于梯度的方法,常常难以在高度和不确定的环境中进行绕过,而单方法元启发式学可能无法充分利用解决方案空间。为了应对这些挑战,我们提出了受约束的混合元神经(CHM)算法,这是一种新颖的方法,将多种基于人群的优化技术结合到统一的框架中。所提出的过程分为两个阶段:初始探测阶段评估多个元启发式学,以根据错误率确定最佳性能,然后是拟合阶段,其中所选的元启发式优化PNN以实现最佳的平滑参数。此迭代过程可确保有效的Ex-