本书介绍并研究了一类生物神经网络的随机模型。生物神经网络是一个具有大量相互作用的组成部分(神经元)的系统。每个神经元的活动都用一个点过程表示,即神经元发出动作电位(也称为脉冲)的连续时间。一般认为,脉冲活动是系统编码和传输信息的方式。我们对大脑皮层工作原理的大部分理解都源于对点过程的实际观察数据。神经生理学家通过平均或聚合来分析这些数据,构建了所谓的刺激周围时间直方图(46)。据我们所知,(50)是第一个估计脉冲时间序列强度的人,即使他没有使用数学框架,顺便说一句,数学框架当时还不存在。 (46) 即使不使用术语,也清楚地将数据以数学形式表示为点过程的实现。点过程形式主义的明确使用将在 (25) 一书中出现。我们认为,脉冲序列系统的现代统计研究始于 70 年代的 Brillinger(例如,参见 (11) 和 (13))。点过程是时间点的随机序列。确实有生物学证据表明,神经元的脉冲活动本质上是随机的。按照 Brillinger 的说法,在我们的模型中,给定神经元的脉冲概率是其膜电位的函数。膜电位可以粗略地定义为一组相邻神经元(称为突触前神经元)的整体活动之和。当神经元脉冲时,其膜电位被重置为平衡电位。同时,如果受到影响,则神经元集会经历膜电位
深神经网络(DNNS)缺乏对概率图形模型(PGM)的精确语义和确定性的概率解释。在本文中,我们通过构造与神经网络完全相对应的无限树结构的PGM提出了创新的解决方案。我们的研究表明,在正向传播过程中,DNN确实执行了PGM推断的近似值,在这种替代PGM结构中是精确的。我们的研究不仅补充了将神经网络描述为内核机器或无限大小的高斯过程的现有研究,而且还阐明了DNNS对PGMS的精确推断进行更直接的近似。潜在的好处包括改进的教学法和DNN的解释以及可以合并PGM和DNN优势的算法。
摘要 - 电气价格预测是电力系统有效运行和支持市场参与者明智的决策的关键工具。本文探讨了一种新的方法,旨在通过结合基本变量的概率投入来提高电价预测的准确性。传统方法通常依赖于外源变量的点预测,例如负载,太阳能和风产生。我们的方法提出了这些基本变量的分位数预测的整合,提供了一组新的外源变量,这些变量可以解释不确定性的更全面表示。我们使用最新数据对德国电力市场进行了经验测试,以评估这种方法的有效性。调查结果表明,对负载和可再生能源产生的概率预测显着提高了电价点预测的准确性。此外,结果清楚地表明,通过完整的概率预测信息,可以实现预测准确性的最高提高。这凸显了概率预测在研究和实践中的重要性,尤其是在报告负载,风能和太阳预测中的最新目前是不足的。
概率时间序列预测在一系列现实世界中(例如能量系统)中起着至关重要的作用,尤其是基于置信区间或基于随机模型的预测性控制的异常检测的预测模型。当难以获得准确且可拖延的第一原理模型(例如,基于物理学的模型)时,深度预测模型特别有用。因此,最近的发展集中在深度学习方法上,这些方法可以从历史数据中识别出模式并提供预测。 C.F.d eep ar [18],n-beats [15]和时间融合变压器(TFT)[13]。虽然深度学习方法可以产生准确的时间序列预测[16],但它们通常也会产生不可靠的预测,有时甚至与传统的统计模型(如季节性ARIMA或经典MLP)相比,甚至表现不佳[10]。此外,对于小型数据集,这些方法容易出现过度拟合或模式崩溃[7,14]。
摘要 - 富含广泛和流动的培训数据,生成模型在多个领域表现出了非凡的创造力。尽管如此,如何避免滥用对隐私敏感和版权的数据仍然是一个开放的问题。会员推理攻击(MIAS)通过推断可疑数据记录是机器学习模型的培训数据的一部分,从而提供了潜在的补救措施。尽管针对常规分类模型的MIA已引起了很大的关注,但最近的研究已开始研究MIA在生成模型中的应用。我们的研究表明,针对生成模型量身定制的当前MIA严重依赖于目标模型中存在的过度拟合。但是,可以通过应用各种正则化技术来缓解过度拟合,从而导致现有MIA在实际情况下的表现不佳。与过度拟合相比,记忆在使深度学习模型实现最佳性能中起着至关重要的作用,从而使其变得更加普遍。在生成模型中,记忆表现为围绕成员记录的记录的概率分布的上升趋势。因此,我们提出了一种评估成员推理攻击(PFAMI)的概率波动,这是一种新型的MIA框架,旨在通过分析围绕特定记录的概率波动来识别记忆模式来推断成员资格。我们的代码和数据集可在以下链接1中找到。我们对各种生成模型和多个数据集进行了广泛的实验,这表明PFAMI与表现最好的基线相比,PFAMI将攻击成功率(ASR)提高了约27.9%。
我们介绍了ERHL,这是一种程序逻辑,用于推理有关对概率计划的关系期望属性的推理。erhl是定量的,即,其前后条件在扩展的非阴性实物中具有值。鉴于其定量断言,ERHL克服了先前逻辑中的随机性对齐限制,包括PRHL,PRHL是一种流行的关系程序逻辑,用于推理密码构造的安全性,而APRHL是用于差异隐私的PRHL的变体。结果,ERHL是第一个与所有几乎所有肯定终止程序的非平凡的健全性和完整性结果支持的关系概率程序逻辑。我们表明,在程序等效性,统计距离和差异隐私方面,ERHL是合理且完整的。我们还表明,如果ERHL可以证明,每个PRHL判断都是有效的。我们展示了ERHL的实际好处,其中示例是PRHL和APRHL无法实现的示例。
概率图形模型(PGM)紧凑地编码一组随机变量的完整关节概率分布。PGM,并已成功地用于计算机视觉中(Wang等,2013),误差校正代码(McEliect等,1998),生物学(Durbin等,1998)等(Durbin等)等。在本文中,我们专注于离散的PGM。对具有可牵引因子1的离散PGM进行近似后验推断的标准方法涉及诸如循环信念传播(LBP)之类的消息通讯算法(Pearl,1988; Murphy等,1999)。lbp在变量和因子图的因子之间传播“消息”。,尽管过去进行了几次尝试(请参阅第2节),但没有建立良好的开源Python软件包可以实现效率和可扩展的LBP用于一般因子图。关键挑战在于设计和操纵Python数据结构,该数据结构包含LBP消息,用于支持具有任意拓扑的大型因子图和
在本手稿中,作者提出了一种使用物理噪声源(或称为熵源)进行随机变量进行概率分布计算的方法。这项工作是基于研究小组以前通过WDM和带有相变内存的光子横杆阵列的矩阵乘积乘法的工作。对我的理解,在这里,他们提出适应相同的硬件来操纵“混乱的光”以独立控制输出概率分布的平均值和差异,并使用WDM启用“单次镜头”读数此类概率分布。我想向作者努力详细地详细解释其系统的物理学,并在主要文本和补充材料中以很高的清晰度来解释其系统的物理。尽管我对这种方法的实际好处有保留,但从学术角度来看,这个想法听起来很有趣和新颖。我会向编辑接受次要修订。下面我将列举一些我认为需要改进的几点。
在动态环境中运行的边缘设备迫切需要能够持续学习而不会发生灾难性遗忘。这些设备中严格的资源限制对实现这一目标构成了重大挑战,因为持续学习需要内存和计算开销。使用忆阻器设备的交叉开关架构通过内存计算提供能源效率,并有望解决此问题。然而,忆阻器在电导调制中通常表现出低精度和高可变性,这使得它们不适合需要精确调制权重大小以进行整合的持续学习解决方案。当前的方法无法直接解决这一挑战,并且依赖于辅助高精度内存,导致频繁的内存访问、高内存开销和能量耗散。在这项研究中,我们提出了概率元可塑性,它通过调节权重的更新概率而不是大小来整合权重。所提出的机制消除了对权重大小的高精度修改,从而消除了对辅助高精度内存的需求。我们通过将概率元可塑性集成到以低精度忆阻器权重在错误阈值上训练的脉冲网络中,证明了所提机制的有效性。持续学习基准的评估表明,与基于辅助内存的解决方案相比,概率元可塑性实现了与具有高精度权重的最先进的持续学习模型相当的性能,同时用于附加参数的内存消耗减少了约 67%,参数更新期间的能量消耗减少了约 60 倍。所提出的模型显示出使用低精度新兴设备进行节能持续学习的潜力。
设计自由形式的光子设备是一个充满挑战的主题,因为结构性自由的高度。在这里,我们提出了一种新算法,该算法使用伴随灵敏度分析和扩散模型对光子结构进行操作。我们证明,将伴随梯度值整合到非授权过程中,可以生成高性能设备结构。我们的方法可以通过合并在遵循制造约束的合成图像上训练的扩散模型来优化少量模拟的结构。与常规算法相比,我们的方法消除了对复杂的二进制化和圆锥过滤器的需求,克服了本地Optima的问题,并提供了多种设计选项。尽管具有固有的随机性,但我们的算法稳健地设计了高性能设备,并且优于最先进的非线性算法。