pia.schweizer@cea.fr电子探针微分析(EPMA)是一种可靠且广泛使用的技术,可用于对科学和工业应用进行非破坏性,准确的材料表征。尽管对锂具有极大的兴趣(LI),并且迫切需要在微米级进行准确的非破坏性分析,但使用EPMA对LI的LI量化尚未成功进行。最近开发的周期性多层允许围绕特征性的li k发射〜50 eV [1]的能量范围的光谱,但是配备有弯曲的晶体光谱仪和标准商业化多层的微型探针检测和定量没有衍射光栅仍然具有挑战性。LI检测的困难是由不同的因素引起的:LI的荧光产量极低,很少有Li 1S核心孔的衰减产生的特征光子,有利于螺旋电子的发射。由于其低能量,光子甚至在离开样品及其最终涂层之前就被强烈吸收。因此,信号主要来自可能受到污染的薄表面层,并且可能对电子轰击敏感。微探针成分,尤其是通过分离窗口的进一步吸收光子,将降低测得的强度。由于Li K发射(2p - 1s转变)涉及价电子,因此Li发射带的形状高度依赖于价带中的状态密度(DOS),并且高度依赖于锂原子的化学状态。SCI。 2021,11,6385。 2022,51(4),403。SCI。2021,11,6385。2022,51(4),403。某些EV和强峰形变化的化学位移可能会发生,对于光元的EPMA应该是预期的[2,3],使定量分析变得复杂。这项工作显示了不同材料中LI定量EPMA的一些有希望的结果,包括电池化合物和LI浓度降至2%的金属合金。在整合新检测系统以及使用适用于低压EPMA的实际标准和校正程序进行定量程序之后,这是可能的。即使需要进行额外的调查,研究人员的锂表征也引起了极大的兴趣。我们表明,即使EPMA包含在重矩阵中,EPMA是对LI进行定量分析的强大工具,其元素显示出与LI相同的光谱范围内的特征发射带。这种新颖的LI量化方法比使用SEM或配备了多层光栅的ENER或电子微探针检测到其他技术更容易访问,并且比检测更便宜。[1] Polkonikov,V.,Chkhalo,N.,Pleshkov,R.,Giglia,A.,Rividi,N.,Brackx,E.,Le Guen,K.[2] Schweizer,P.,Brackx,E.,Jonnard,P。,X射线光谱。[3] Hassebi,K.,Le Guen,K.,Rividi,N.,Verlaguet,A.,Jonnard,P.,X-Ray Spectrom。(http://doi.org/10.1002/xrs.3329)在印刷中。
大型语言模型(LLM)在跨领域表现出色,在医学评估基准(例如MEDQA)上也提供了显着的表现。但是,在现实世界中医学场景中,报告的性能与实际有效性之间仍然存在显着差距。在本文中,我们旨在通过采用多方面的检查模式来系统地探索当前LLM的实际掌握医学知识的掌握,以探讨这一差距的原因。具体而言,我们开发了一种新颖的评估框架多叶序,以检查LLM在多个方面的编码和掌握医学知识中的范围和覆盖范围。基于多叶术框架,我们构建了两个多方面的评估数据集:Multidisek(通过从临床疾病知识库中产生问题)和MultiMEDQA(通过将Medical Benchmark MedQA从Medical Benchmark MedQa重新提出每个问题,以进行多方面的问题)。这些模拟数据集的实验结果表明,掌握医学知识的当前LLM的程度远低于其在现有医疗基准上的表现,这表明它们缺乏深度,预见和在掌握知识中的全面性。因此,当前的LLM尚未准备好在现实世界中的任务中应用。代码和数据集可在https://github.com/thumlp/multifaceteval上找到。
欧盟反补贴调查背景 反补贴措施旨在抵消国际贸易扭曲,是欧盟三种贸易防御手段 (TDI) 之一,其他两种手段包括反倾销和保障措施。欧盟 TDI 立法框架源自世界贸易组织的三个多边协定,因此与之一致。反补贴调查确定是否有证据表明非欧盟国家向向欧盟出口某些产品的行业提供补贴,由于严格的欧盟国家援助规则,这些补贴对未从此类补贴中受益而生产类似产品的欧盟行业造成或威胁造成损害。由于反补贴调查针对的是国家行为,因此具有政治敏感性,欧盟使用它们的次数少于反倾销调查,反倾销调查针对的是公司。这是由于非欧盟国家的国家补贴流动缺乏透明度,而且缺乏合作。截至 2022 年底,已生效的反补贴措施为 21 项,反倾销措施为 117 项。相比之下,美国使用反补贴调查的频率要高得多。调查通常由欧盟行业投诉引发,但对于电动汽车而言,如果有足够的证据,则无需因投诉而进行当然调查。在长达 9 个月的调查后,委员会可征收为期 5 年的临时反补贴关税,并在 13 个月后征收最终反补贴关税。一旦审查证明损害仍然存在,这些关税可能会延长类似的期限。欧盟成员国可以根据多数票阻止最终关税。
1.1 什么是重力探测器B?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.2 探索实验真理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 GP-B 飞行任务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 1.4 两种爱因斯坦效应 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 1.5 为什么要进行另一次爱因斯坦测试?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 1.6 实验设计和“接近零点” 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....................6 1.7 独特和非凡的技术 ......。。。。。。。。。。。。。。。。。。。。。。。。.........................7 1.7.1 世界上最完美的陀螺仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....7 1.7.2 陀螺悬挂系统(GSS) ................。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.8 1.7.3 用于陀螺仪方向读数的SQUID磁力仪 ......................................9 1.7.4 指向望远镜 ........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...........10 1.7.5 将导星的运动与遥远的类星体联系起来 ...........。。。。。。。。。。。。。。。。。。。。。。。。。11 1.7.6 杜瓦瓶。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>............11 1.7.7 航天器控制—九个自由度 ......。。。。。。。。。。。。。。。。。。。。。。。。...... div>.......13 1.8 管理实验 ..... < /div>.....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....13 1.9 GP-B 航天器 .......< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 1.10 在轨运行。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 1.11 异常解决。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 1.12 管理项目风险。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 1.13 一次成功的任务。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 1.14 GP-B 的更广泛遗产。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22
动作电位是神经计算的基本单位。尽管在动物模型中记录大量单个神经元方面已经取得了重大进展,但由于临床限制和电极可靠性,这些方法在人类身上的转化受到限制。在这里,我们介绍了一种可靠的方法,使用 Neuropixels 探针在人类术中记录数十个神经元,可同时记录多达 100 个单个单元。大多数单个单元在到达目标深度后 1 分钟内处于活动状态。电极阵列的运动与产量呈很强的负相关性,这表明进一步提高探针效用面临着重大挑战和机遇。在大多数记录中,时间上活动相近的细胞对在空间上也更接近,展示了解决复杂皮质动态的能力。总之,这种方法可以访问人类新皮质深度上的群体单个单元活动,而这种规模以前只能在动物模型中访问。
通过分享和解读内心状态实现相互理解具有社会意义。先前的研究表明,人们认为脑机接口 (BCI) 是一种隐性交流认知状态的合适工具。在本文中,我们进行了一项在线调查(N=43),以确定隐性共享认知状态的系统的设计参数。为了实现这一目标,我们设计了一个名为“SpotlessMind”的研究探测器,以艺术的方式与他人分享大脑占用情况,同时考虑旁观者的体验来引出用户反应。结果显示,98% 的人希望看到该装置。人们会将其用作一种开放的姿态和一种沟通的媒介。抽象视觉、听觉和体感描述是在可理解性和用户隐私保护之间的良好权衡。我们的工作支持设计引人入胜的原型,以促进个人之间的同理心、认知意识和融合。
胃癌是全球与癌症相关死亡的第二大主要原因。早期诊断显着增加了生存的机会;因此,需要改进的辅助探索和筛选技术。以前,我们通过将光学探针插入仪器通道中使用了增强的多光谱内窥镜。然而,有限的视野和在组织上留下的光学活检留下的标记使探测的可疑区域的导航和重新访问变得复杂。在这项贡献中引入了两种创新工具,以显着提高临床实践中患者的可追溯性和监测:(i)视频镶嵌以建立对大型胃区域的更全面和全景的视野; (ii)具有内镜图像的靶向和注册的光学活检。所提出的基于光流的镶嵌技术选择了最小化纹理不连续性的图像,尽管缺乏纹理和照明变化,但仍有坚固的不连续性。光学活检的靶向基于内窥镜视图中自由标记探针的自动跟踪,使用深度学习在探索过程中动态估算其姿势。假设器官的小目标区域几乎是平坦的,姿势估计的精度足以确保标准白光颜色图像和高光谱探针图像的精确重叠。这允许将所有时空跟踪的活检位点映射到全景镶嵌上。从医院的患者获得的视频中进行了实验验证。所提出的技术纯粹是基于软件的,因此很容易地整合到临床实践中。它也是通用的,并且与连接到圆柱纤维镜连接的任何成像方式兼容。
抗生素耐药性是公共卫生面临的一大挑战,过去的一年里这一问题愈演愈烈 [1, 2]。对于由细菌病原体金黄色葡萄球菌引起的感染尤其如此,这种感染是导致死亡的主要原因,通常与社区获得性耐药菌株 (MRSA) 有关 [3]。这就迫切需要找到新的解决方案,以便有效地诊断和治疗,克服耐药性,避免抗生素库的耗尽。需要金黄色葡萄球菌内的新蛋白质靶点来开发有效的诊断探针,既可用于成像应用,也可用于治疗策略,以阻断细菌的生产性感染,而不会迫使生物体选择耐药突变体。基于氟膦酸酯的活性探针在促进生物膜生长的条件下,鉴定出金黄色葡萄球菌中十种以前未鉴定的活性丝氨酸水解酶,这可以满足这一需求。这些酶被命名为氟膦酸酯结合水解酶 (Fphs),每个酶的字母顺序取决于其预测大小 (52 kD FphA – 22 kD FphJ) [4]。它们都是 α/β 水解酶超家族的成员,其特点是核心由八个 β 链组成,这些 β 链由几个 α 螺旋连接,活性位点为丝氨酸-组氨酸-天冬氨酸或谷氨酸三联体。亲核丝氨酸用于水解底物,小分子可以轻松且特异性地靶向 [5, 6]。一般来说,这些蛋白质在代谢物、肽和脂质的加工中起着重要作用,是控制细胞信号传导和代谢的一种手段;然而,到目前为止,所有 Fphs 的生物学功能仍然未知,只有 FphF 的结构被确定 [6, 7]。它们在生物膜形成条件下的活性状态使它们易于通过化学抑制剂进行修饰,从而开发成探针和药物。这种新化合物
据以色列广播公司 KAN 周日报道,尽管法院下令,21 岁的以色列陆军预备役军人 Yuval Vagdani 仍在巴西度假,但仍设法离开这个拉丁美洲国家,据报道正在返回被占领土。他如何逃避逮捕的细节尚不清楚,但似乎他得到了以色列驻巴西利亚大使馆的协助。
近年来,3D打印技术引起了很多关注。由于其低生产成本以及制造复合和几何形状的能力,在许多行业中使用3D打印技术被广泛接受。本文通过将3D打印技术用于超声扫描仪应用程序,介绍了探针持有人的制造。3D打印探针持有人的制造始于Taguchi技术设计(DOE)。确定了三个主要影响:打印温度,层厚度和填充密度。SolidWorks软件用于构建探针持有人的计算机辅助设计(CAD)模型。随后,将CAD模型文件转换为3D打印过程的标准Tessellation语言(STL)文件。使用3D打印机成功制造了探针持有人,在3D印刷产品的外表面上没有任何缺陷。基于弯曲测试结果,可以得出结论,探针持有人的强度是由层厚度归因于层的。