在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
摘要:较长连贯性时间T M的分子自旋量值的选择是实现基于分子的量子技术的核心任务。即使可以通过有效的合成策略和临时的实验测量程序来实现足够的长时间,但仍需要彻底研究和理解导致连贯性丧失的许多因素。振动特性和氢的核自旋是其中两个。前者起着至关重要的作用,但是旨在研究其对分子络合物的自旋动力学的影响(例如基准苯甲烷氨酸(PC))的详细理论研究仍然缺失,而后者的效果则应详细检查,以详细研究这种化合物的类别。在这项工作中,我们采用了一种合并的理论和实验方法来研究经典[Cu(PC)]的松弛特性和基于配体Tetrakis(thiadiaszole)卟啉(H 2 TTDPZ)的Cu II复合物,由无氢分子结构表征。分子振动的系统计算例证了正常模式对自旋 - 晶格弛豫过程的影响,取决于正常模式的对称性,对T 1提出了不同的贡献。此外,我们观察到可以通过从配体中去除氢来实现可观的T m增强。■简介
摘要:本研究通过全面的光致发光(PL)表征研究了硫磺溴(CRSBR)的电子带结构。我们清楚地确定了两个紧密相邻的传导带状态和两个不同的价带状态之间的低温光学转变。对PL数据的分析稳健地揭示了跨CRSBR的不同厚度(从单层到散装)的不同厚度的能量分裂,带隙和激子跃迁。依赖温度依赖性PL测量阐明了在NE e el温度以下的频带拆分的稳定性,这表明镁与激子结合的元素负责使对称性断裂和从二级传导带最小值(CBM2)向全局价最大带(VBM1)的对称性破坏和增亮。共同揭示了在传导和价带中的分裂,而且还突出了我们对抗超磁性二维Van der waals晶体的光学,电子和磁性能之间相互作用的显着进步。
摘要:N-氟苯基-9-甲状腺甲苄酰基(FMOC)-pro-tected氨基酸已经显示出很高的抗菌施用潜力,其中苯丙氨酸衍生物(FMOC-F)是最著名的代表。但是,FMOC-F的活性谱仅限于革兰氏阳性细菌。对有效抗菌材料的需求扩大了石墨烯及其衍生物的研究,尽管报告的结果有些争议。在此,我们将氧化石墨烯(GO)与FMOC-F氨基酸结合在一起,首次形成FMOC-F/GO混合水凝胶。我们研究了每个成分对凝胶化的协同作用,并评估了材料对革兰氏阴性大肠杆菌(大肠杆菌)的杀菌活性。go片本身不会影响FMOC-F自组装本身,而是调节凝胶的弹性并加快其形成。杂化水凝胶会影响大肠杆菌的存活,最初导致细菌死亡突然死亡,然后由于接种效应(IE)而恢复了存活的细菌。石墨烯与氨基酸的组合是发展抗菌凝胶的一步,因为它们易于制备,化学修饰,石墨烯功能化,成本效益以及每个成分的物理化学/生物学协同作用。■简介
尽管存在使用神经反馈的几项情绪调节研究,但仍评估了少数区域之间的相互作用,因此,需要进一步研究以了解与情绪调节有关的大脑区域的相互作用。我们通过自传记忆通过自传记忆来上调积极的情绪,通过同时实现了功能性磁共振成像(fMRI)来实现脑电图(EEG)神经反馈。然后,对整个大脑区域进行了探索性分析,以了解神经反馈对大脑活动的影响以及与情绪调节有关的整个大脑区域的相互作用。对照组的参与者和实验组的参与者分别观看自传记忆的正面图像,并分别获得假或真实的(基于α不对称)的eeg神经反馈。提出的多模式方法量化了EEG神经反馈在变化EEGα功率,fMRI血液氧合水平依赖水平(BOLD)活性(枕骨,顶叶和边缘区域的活性(BOLD)活性(BOLD)活性(高达1.9%)以及实验中/额叶中的/limbic ins ins inter-preetal ins inter-pretiels组之间的影响。通过比较实验条件(上调和视图块)之间的大脑功能连通性,并通过比较实验组和对照组的大脑连通性来确定新的连通性联系。心理测量评估确定了神经反馈实验组中正情绪状态和负面情绪状态的显着变化。基于对情绪区域所有大脑区域之间活动和连通性的探索性分析,我们发现
大量工作表明,在行为过程中,神经种群表现出低维动力学。但是,有多种对低维神经种群活动进行建模的不同方法。一种方法涉及潜在的线性动力学系统(LDS)模型,其中通过具有线性动力学的低维潜在变量的投影来描述种群活动。第二种方法涉及低级别的复发性神经网络(RNN),其中人口活动直接来自过去活动的低维投影。尽管这两种建模方法具有很强的相似性,但它们在不同的情况下出现,并且倾向于具有不同的应用领域。在这里,我们检查了潜在LDS模型与线性低级别RNN之间的精确关系。什么时候可以将一种模型类转换为另一个模型类,反之亦然?我们表明,由于潜在LDS模型的非马尔可夫特性,潜在的LDS模型只能在特定限制情况下转换为RNN。相反,我们表明可以将lnns映射到LDS模型上,而潜在维度最多是RNN等级的两倍。我们结果的一个令人惊讶的结果是,部分观察到的RNN比仅由仅观察到的单位组成的RNN更好地代表了LDS模型。
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 7 月 20 日发布。;https://doi.org/10.1101/2020.07.19.211185 doi:bioRxiv preprint
2.1 Studying Behavior across Development 2.1.1 Study Designs 2.1.2 Converging Technologies and Methods 2.2 Behavioral Studies 2.2.1 Studying Infant Cognition 2.2.2 Studying Child and Adolescent Cognition 2.3 Probing Human Brain Structure 2.3.1 Structural MRI 2.3.2 Diffusion-Weigh ted Imaging (DWI) 2.4 Probing Human Brain Function: Measures of Electrical Activity 2.4.1 Electroencephalography (EEG) 2.4.2 Event-Related Potentials (ERPs) Derived from EEG 2.4.3 Magnetoencephalography (MEG) 2.5 Probing Human Brain Function: Blood-Based Measures 2.5.1 Cerebral Blood Volume and Flow 2.5.2 Overview of fMRI 2.5.3 ÍNIRS 2.6 fMRI Data Analysis 2.6.1 The Basics 2.6.2 Interpretation of Pediatric fMRI Data 2.6.3 Functional Connectivity
顾名思义,语言的上下文表示语言表示通常是由于其编码上下文的能力而动机。这些表示形式捕获了上下文的哪些方面?我们采用了一种使用代表性相似性分析(RSA)来解决这个问题的方法。作为案例研究,我们研究了动词嵌入动词的主题的程度,代词嵌入的代词编码代词的前提,并且一个全句子表示编码句子的头部单词(由依赖性parse确定)。在所有情况下,我们都表明,伯特的上下文化嵌入反映了所研究的语言依赖性,而伯特的依赖性比编码语言较低的偏见对照的程度更大。这些结果证明了我们的方法在假设之间裁定上下文的哪个方面在语言表示中编码的能力。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是