引言人工智能 (AI) 的发展已展现出令人瞩目的性能,特别是在图像处理或游戏等明确定义的领域。然而,所部署的技术对于人类用户来说可能是不透明的,这引发了一个问题:人工智能系统如何提供解释 (Neerincx 等人,2018 年;Rosenfeld 和 Richardson,2019 年),并且监管框架对可解释人工智能 (XAI) 的需求日益增长。话虽如此,2017 年,谷歌的研究主管 Peter Norvig 指出,在人类可能不擅长提供“解释”的情况下期望计算机提供“解释”是具有讽刺意味的。可解释人工智能 (XAI) 的大部分工作都严重依赖于以计算机为中心的视角 (Springer,2019 年)。例如,Holzinger 等人 (2020) 假设人类和人工智能系统可以平等地访问“基本事实”。由此可见,可解释性“……突出了机器表示中与决策相关的部分……,即有助于模型在训练中的准确性或特定预测的部分。”与许多 XAI 文献一样,这并没有为人类提供任何角色,只能作为被动接受者。这意味着人工智能系统能够反省自己的过程来生成解释。然后将得到的解释呈现给用户,并描述人工智能系统的流程或它使用过的特征(“决策相关部分”)。这样,解释就只是一个建议(来自人工智能系统)加上与此相关的特征。正如 Miller (2017) 所指出的那样,这种态度的一个问题在于,它是基于设计师对什么是“好的”解释的直觉,而不是基于对人类如何响应和利用解释的合理理解。这并不能说明为什么选择某些特征,也不能说明为什么建议适合用户的关注点。它也没有将解释置于更广泛的组织中;分析师的解释可能与数据收集管理人员或接受分析师简报的经理的解释不同。对于 Holzinger 等人 (2020) 来说,情况的各个方面(定义为基本事实)被组合成一个陈述;也就是说,解释只是这个陈述的一种表达。这意味着从特征到解释存在线性插值。这类似于 Hempel 和 Oppenheim (1948) 的“覆盖定律模型”,该模型关注的是历史学家如何根据先前的原因来解释事件。然而,“基本事实”(由 Holzinger 的过程模型和覆盖定律模型假设)很少得到完全定义(导致在选择相关特征时产生歧义)。这意味着,仅仅陈述情况方面而不说明为什么选择这些方面(而不是其他方面)可能不会产生有用或可用的解释。霍夫曼等人(2018)对与解释相关的文献进行了全面的回顾。从这篇评论来看,解释涉及人类的理解(将人工智能系统的输出置于特定情境中),我们同意,考虑这一点的适当框架是数据框架的理解模型(Klein 等人,2007)。此外,理解(及其与解释的关系)依赖于认识到过程(提供和接收解释)必须是相互的、迭代的和协商的。这个过程依赖于“解释者”和“被解释者”达成一致。换句话说,解释涉及“共同点”(Clark,1991),其中理解上有足够的一致性以使对话继续进行。对话的性质将取决于提供解释的情况和被解释者的目标。例如,被解释者可能是“受训者”,他试图理解解释以学习决策标准,也可能是“分析师”,使用人工智能系统的建议作为政策。
书面同意在 1 月 23 日星期二下午 5 点之前按照发起人的意图接收、管理和报告每笔拨款的结果。所有地方拨款均须遵守全州采购流程。请让 COG 填写他们同意接收的每笔拨款的认证表。如果 COG 在日后确定无法或不愿意按照发起人的意图支出拨款,则 COG 有权拒绝拨款。[新墨西哥州 GRO - 第 9/10 节]
在本文中,我们提出了 Skip-Plan,一种用于教学视频中程序规划的压缩动作空间学习方法。当前的程序规划方法都遵循每个时间步的状态-动作对预测并相邻地生成动作。虽然它符合人类的直觉,但这种方法始终难以应对高维状态监督和动作序列的错误积累。在这项工作中,我们将程序规划问题抽象为数学链模型。通过跳过动作链中不确定的节点和边,我们以两种方式将长而复杂的序列函数转换为短而可靠的序列函数。首先,我们跳过所有中间状态监督,只关注动作预测。其次,我们通过跳过不可靠的中间动作将相对较长的链分解为多个短的子链。通过这种方式,我们的模型在压缩动作空间中探索动作序列内各种可靠的子关系。大量实验表明,Skip-Plan 在程序规划的 CrossTask 和 COIN 基准测试中实现了最先进的性能。
打开文件后,发声的处理就开始。分析的进度显示在主屏幕左下角的状态框中,但是在处理完成之前,屏幕将保持空白。在完成探测分析后,初始屏幕将充满基于选项卡的显示,其中每个选项卡代表数据的不同视图。选项卡按数据处理的一般顺序从左到右(请参见下图),即从原始数据到QC和级别计算到编码消息。阅读选项卡显示部分以进行进一步说明。
启动了电动合作社(规格)的太阳能,以帮助优化电池存储和太阳能储存的电池的计划,采购和操作。Specs是由美国能源部国家可再生能源实验室(NREL)选择的太阳能创新网络(SEIN)。Cliburn and Associates,LLC领导了项目团队,包括北卡罗来纳州清洁能源技术中心(NCCETC),Cobb Electric会员公司,Kit Carson Electric Cooperative,United Power,以及其他合作社以及公共电力公用事业公司以及批发供应商,市场专家,市场专家,以及储能行业的利益相关者。随着SEIN第2轮的高潮,在2021年夏季,Cliburn and Associates和NCCETC继续支持Specs资源的传播,并继续进行工作,从而扩大了我们的重点,因为它适用于新的开发模型和市场趋势。采购对公用事业侧存储和太阳能项目的挑战主要集中在早期决策上:定义高优先级用例,同时也探索如何从项目中获得更多价值的方法,并为其生活中的市场变化做准备。通过资产所有权或PPA/ESA合同的采购策略的选择也极大地影响了采购。随着资源收缩的增长,缺乏这种类型的采购的公开指南是急剧的。此简介(以演示格式)开始满足这些要点等的指导需求。从定义上讲,它没有尝试最终或完全解决该过程中的每个步骤。附加了详细的免责声明。尽职调查 - 研究本指南对您的特定情况的适用性 - 被认为是该信息的使用术语。
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
近几十年来,激光技术的进步使飞秒激光器的创建成为可能。这是一种特殊的激光类型,在该激光器上,激光束由重复的高能灯爆发仅几百秒秒,而与在每个常见激光指针中发现的连续激光束相反。短脉冲持续时间与每个爆发中的高能量配对会产生显着的峰值功率,从而使激光器能够以常规激光不能无法处理的方式处理材料。但是,能够产生飞秒激光束的机器的大尺寸和重量通常要求它们保持固定。要利用激光束进行处理,需要精确的重定向。在本报告中,我们描述了将常规CNC机器转换为激光处理站的过程,并通过在玻璃,金属箔和KTP晶体上写下我们的发现。该机器能够遵循具有千分尺精确度的CAD说明,以更改,铭文和切割一系列材料。使用绿色(λ= 514 nm)以及红外激光(λ= 1028 nm)进行处理,后者产生更好的结果。最终的激光设置可用于反复,可靠地处理所有材料,并在与化学蚀刻结合使用时在KTP上有很有希望的结果。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
委员会和检查报告(结果)对您具有约束力。10. 税费:i. 买方在出示单独编号的“税务发票”后,应向供应商支付 GST/CED,发票上应显示《1990 年销售税法》第 23 条规定的销售税金额和其他详细信息。ii. 按照现行的 GST SRO,18% GST 金额的 20% 由买方保留,随后提交给 CBR/政府金库,而 18% GST 金额的 80% 将支付给供应商,随后存入 CBR/政府金库。iii. 所得税将按规定扣除。iv. 开标后,政府征收的任何税费变更均由投标人承担。之后不再接受任何报价变更。 11. 付款:所有付款将通过划线支票支付给