ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
2.6连贯性,多元自回归(MVAR)建模和定向转移功能(DTF)67 2.7混乱和动态分析71 2.7.1熵71 2.7.2 Kolmogorov熵71 2.7.7.3.7.3 Series 75 2.7.6 Approximate Entropy 11 2.7.7 Using the Prediction Order 78 2.8 Filtering and Denoising 79 2.9 Principal Component Analysis 83 2.9.1 Singular-Value Decomposition 84 2.10 Independent Component Analysis 86 2.10.1 Instantaneous BSS 90 2.10.2 Convolutive BSS 95 2.10.3 Sparse Component Analysis 98 2.10.4 Nonlinear BSS 99 2.10.5 Constrained BSS 100 2.11受约束BSS的应用:示例102 2.12信号参数估计104 2.13分类算法105 2.13.1支持向量机106 2.13.2 K-Means算法114 2.14匹配匹配追踪117 2.15摘要和结论118参考119 119 119
打开文件后,发声的处理就开始。分析的进度显示在主屏幕左下角的状态框中,但是在处理完成之前,屏幕将保持空白。在完成探测分析后,初始屏幕将充满基于选项卡的显示,其中每个选项卡代表数据的不同视图。选项卡按数据处理的一般顺序从左到右(请参见下图),即从原始数据到QC和级别计算到编码消息。阅读选项卡显示部分以进行进一步说明。
经典信号处理和非经典信号处理:信号的节奏 作者:Attaphongse Taparugssanagorn 本书首次出版于 2023 年 剑桥学者出版社 Lady Stephenson 图书馆,纽卡斯尔,NE6 2PA,英国 大英图书馆出版数据编目 本书的目录记录可从大英图书馆获取 版权所有 © 2023 Attaphongse Taparugssanagorn 保留本书的所有权利。 未经版权所有者事先许可,不得以任何形式或任何方式(电子、机械、影印、录制或其他方式)复制、存储在检索系统中或传播本书的任何部分。 ISBN (10):1-5275-2864-2 ISBN (13):978-1-5275-2864-2
近几十年来,激光技术的进步使飞秒激光器的创建成为可能。这是一种特殊的激光类型,在该激光器上,激光束由重复的高能灯爆发仅几百秒秒,而与在每个常见激光指针中发现的连续激光束相反。短脉冲持续时间与每个爆发中的高能量配对会产生显着的峰值功率,从而使激光器能够以常规激光不能无法处理的方式处理材料。但是,能够产生飞秒激光束的机器的大尺寸和重量通常要求它们保持固定。要利用激光束进行处理,需要精确的重定向。在本报告中,我们描述了将常规CNC机器转换为激光处理站的过程,并通过在玻璃,金属箔和KTP晶体上写下我们的发现。该机器能够遵循具有千分尺精确度的CAD说明,以更改,铭文和切割一系列材料。使用绿色(λ= 514 nm)以及红外激光(λ= 1028 nm)进行处理,后者产生更好的结果。最终的激光设置可用于反复,可靠地处理所有材料,并在与化学蚀刻结合使用时在KTP上有很有希望的结果。
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
卫星图像处理是管理我们星球资源的强大工具之一。最近,它在应对全球挑战(例如资源管理,可持续性,气候变化,灾难管理和响应,作物监测等)等全球挑战方面非常重要。图像处理中AI技术的演变已成为处理卫星图像的动力。通过提供高级工具进行分析。FDP旨在深入了解AI在卫星图像处理及其应用中的范围和影响。
直到最近,研究人员主要对阅读中的人类行为数据感兴趣,以了解人类认知。然而,这些人类语言处理信号也可以用于基于机器学习的自然语言处理任务。目前,将脑电图大脑活动用于此目的的研究还很大程度上尚未得到探索。在本文中,我们首次进行了大规模研究,系统地分析了脑电图大脑活动数据在改进自然语言处理任务方面的潜力,特别关注了信号的哪些特征最有益。我们提出了一种多模态机器学习架构,它可以从文本输入和脑电图特征中联合学习。我们发现将脑电图信号过滤到频带中比使用宽带信号更有益。此外,对于一系列词嵌入类型,脑电图数据可以改进二元和三元情绪分类,并且优于多个基线。对于关系检测等更复杂的任务,在我们的实验中,只有情境化的 BERT 嵌入优于基线,这提出了进一步研究的需要。最后,当训练数据有限时,EEG 数据显示出特别有前景。