基于芯片的设计有望降低开发成本并加快上市时间,但这些设计一直只限于大型芯片供应商。现在,业界正在构建一个生态系统,旨在实现结合采用不同工艺节点的第三方芯片的设计。与此同时,RISC-V 通过其开源模型实现了更大的 CPU 创新。这些趋势为 RISC-V 芯片供应商创造了机会。Ventana Micro Systems 赞助了本白皮书的创建,但观点和分析仅代表作者本人。
在开放式云的IBM量子设备上进行的摘要实验用于使用[4、2、2]编码的栅极序列来表征其容错。在IBMQ_BOGOTA和IBMQ_SANTIAGO设备中激活了多达100个逻辑门,我们发现[4,2,2,2]代码的逻辑门集可以被视为大于10门的门序列的故障耐受性。但是,某些电路不满足容错标准。在某些情况下,编码的门序序列显示出高的错误率,该误差率在≈0处较低。1,因此,这些电路中固有的误差无法通过经典后选择来减轻。实验结果与简单错误模型的比较表明,主要的门错误不能以流行的Pauli误差模型来表示。最后,当测试的电路仅限于产生较低尺寸的输出状态的电路时,评估容错标准是最准确的。
如果对量子科学(即理论)没有透彻的理解,就不可能完全掌握现实和宇宙。本文的目的有两个,首先介绍量子信息处理的组成,然后讨论量子科学对理解现实的影响。我认为世界是完全量子的,而经典世界只是量子世界的一个极限情况。论点的关键是量子信息可以被视为一种生命现象。量子信息处理 (QIP) 一直是计算方法的主要主题。在这里,我们将其视为信息允许对世界进行非二元解释的方式。从这个意义上讲,量子信息处理在于理解纠缠如何成为连贯现实的基础,但又高度动态、充满活力和生动。我认为,信息是一种从无到有的创造生命现象。量子信息是实体、系统、现象和事件的关系视图(Auletta,2005 年)。
摘要:近年来,量子计算机的发展取得了显著的进展。为进一步发展,阐明量子噪声和环境噪声引起的误差的性质非常重要。然而,随着量子处理器系统规模的扩大,人们指出会出现一种新型的量子误差,如非线性误差。信息论中如何处理这种新效应尚不清楚。首先,应该明确量子比特误差概率的特征,作为信息论中的通信信道误差模型。本文旨在综述信息论者未来可能面临的量子噪声效应的建模进展,以应对上述非平凡误差。本文解释了一个信道误差模型来表示由于新量子噪声引起的误差概率的奇怪性质。通过该模型,给出了由量子递归效应、集体弛豫和外力等引起的误差概率特征的具体例子。因此,我们无需经历复杂的物理现象就能理解经典信息论中不存在的误差概率奇怪特征的含义。
Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Joao Basso, Andreas Bengtsson, Alexander Bilmes, Alexandre Bourassa, Leon Brill, Michael Broughton, Bob Broughley, David Burkett, Bull, A.B. nell, Benjamin Chiaro, Roberto Collins, William Courtney, Dripto Debroy, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Matthew P. Harrigan, Sean D. Harring, Hilton, Hoy, T. A. , Ashley Huff, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Tanuj Khattar, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landho, Joel, Lee, Lee, Lee Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex O'Brien, Othov, Andre, Pethor, Andre and Pat. Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Yuan Su, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Vaxo, Kelly, Kelly, Julian and Julian n, S. L. Sondhi, Roderich Moessner, Kostyantyn Kechedzhi, Vedika Khemani & Pedram Roushan
在量子计算优势的演示中至关重要的是,将大量的量子缩放到大量的量子位,以指数超过经典的硬件和算法改进。在这里,我们开发了一个二维可编程超导量子处理器Zuchongzhi,该处理器由可调耦合体系结构中的66个功能码头组成。为了表征整个系统的性能,我们执行随机量子电路采样以进行基准测试,最高可达56 QUAT和20个周期的系统大小。该任务的经典模拟的计算成本估计比以前在53 Quitib sycamore处理器上的工作高2-3个数量级[Nature 574,505(2019)。我们估计,Zuchongzhi在1.2小时内完成的采样任务至少将使最强大的超级计算机至少为8年。我们的工作建立了一个明确的量子计算优势,在合理的时间内对于经典计算来说是不可行的。高精度和可编程的量子计算平台为探索新颖的多体现象并实施复杂的量子算法打开了新的门。
d-Wave Systems Inc.(“ D-Wave”)保留其在此文档中的知识产权,此处参考的任何文件及其专有技术,包括版权,商标权利,工业设计权和专利权。D-Wave商标包括D-Wave®,Leap™Quantum Cloud Service,Ocean™,Advance™Quantum System,D-Wave 2000Q™,D-Wave 2X™和D-Wave徽标(“ D-Wave Marks”)。本文档中使用的其他标记是其各自所有者的属性。D-Wave does not grant any li- cense, assignment, or other grant of interest in or to the copyright of this document or any referenced documents, the D-Wave Marks, any other marks used in this document, or any other intellectual property rights used or referred to herein, except as D-Wave may expressly provide in a written agreement.
摘要 — 基于 SRAM 的 FPGA 经常用于太空应用中的关键功能。通常需要在这些 FPGA 中实现软处理器来满足任务要求。开放 ISA RISC-V 允许开发各种开源处理器。与所有基于 SRAM 的 FPGA 数字设计一样,这些软处理器容易受到 SEU 的影响。本文介绍了对一组新推出的开源 RISC-V 处理器的性能和相对 SEU 敏感度的研究。利用动态部分重构,这种新颖的自动测试设备可以快速部署不同的实现并通过故障注入评估 SEU 敏感度。使用 BYU 的新 SpyDrNet 工具,还将细粒度 TMR 应用于每个处理器,结果显示敏感度降低了 20 倍到 500 倍。
在本论文中,灵感是从板球中的时间特征检测电路中汲取的,用于设计双突触延迟元素(基于兴奋性 - 抑制性平衡),从而诱导了基于资源的基于基于资源的基于基于资源的基于基于资源的兴奋性。由于不均匀的动力学,这种双突触元素在混合信号硬件中实现时会产生时间延迟的分布,无论是在单个神经元之间还是在单个神经元之间。在这里,这被用作时空信息表示和学习所需的可变性的来源(作为专用的轴突或神经元延迟或模仿DEN-DENITIC动态的资源 - 有效替代方案。
4.1 安装地点要求................................................................................................................................30 4.2 标准交付 - 装箱清单....................................................................................................................30 4.3 拆包和安装................................................................................................................................32 4.3.1 拆包说明................................................................................................................................32 4.3.2 安装显示屏.............................................................................................................................35 4.3.3 活性炭过滤器.............................................................................................................................35 4.3.4 外部排气系统.............................................................................................................................36 4.4 基本仪器/硬件.............................................................................................................................37 4.4.1 脱水缸.....................................................................................................................................37 4.4.2 试剂篮.....................................................................................................................................40 4.4.3 石蜡缸.....................................................................................................................................42 4.4.4 试剂柜.....................................................................................................................................43 4.4.5 滴水4.4.6 显示屏................................................................................................................................46 4.4.7 HistoCore I-Scan(可选)....................................................................................................47 4.4.8 USB 端口................................................................................................................................48 4.4.9 报警连接................................................................................................................................49 4.5 连接不间断电源 (UPS).........................................................................................................................50 4.6 开启和关闭......................................................................................................................................51 4.6.1 开启......................................................................................................................................51 4.6.2 关机........................................................................................................................................................52 4.6.3 紧急关机....................................................................................................................52 4.6.4 长时间关机后重启...............................................................................................................52 4.7 移动仪器...............................................................................................................................53