语言信息获取的时间动态是理解语言在大脑中如何组织的关键特性之一。不同大脑语言模型之间尚未解决的争论是,语言的构成要素——单词是以顺序方式还是并行方式激活。在本研究中,我们从新颖的角度探讨了这个问题,直接比较了语音生成和感知中单词成分激活的时间过程。在显性对象命名任务和被动听力任务中,我们用单次试验水平的混合线性模型分析了两种语言模式中相同的词汇语义和语音词汇知识引起的事件相关脑电位。结果表明,在刺激开始后 75 毫秒,两种单词成分在生成和感知中同时表现出来;语言模式之间的差异在处理 300 毫秒后才变得明显。这些数据为语言处理的超快速并行动态提供了证据,并在神经组装框架内进行了解释,其中单词在生成和感知过程中招募相同的整合细胞组合。这些词语组合早期并行点燃,之后才以特定行为的方式产生反响。
据当地政府和媒体周五报道,俄罗斯西部布良斯克地区的克雷姆尼埃尔微芯片工厂在乌克兰发动战乱以来最大规模的夜间无人机袭击后暂停生产。
日本政府已宣布承诺到 2050 年实现温室气体净零排放。它设想氢能在未来国家能源经济中发挥重要作用。本文探讨了利用中国海上风电电解生产这种重要氢能来源的可能性。氢能可以液态、与甲苯等化学载体结合或作为氨的成分输送到日本。本文分析了决定这种氢能最终成本的因素,包括生产、储存、转化、运输和目的地处理的费用。本文得出的结论是,中国氢能的输送量和成本可以与日本理想的未来预测一致。
摘要生物聚合物正在为商品和特种化学品的生产增强。微生物能够产生各种各样的生物聚合物,其中一些已经生产,而另一些则需要进一步的特征,甚至可以被发现。本评论文章的重点是生物聚合物,例如多酯(多羟基烷酸酯(PHAS),多糖和蛋白质,由于它们能够为已经建立的基于化石的聚合物提供有吸引力的替代品。此外,这些生物蛋白质也可以作为农业蛋白质的替代品。为了降低生产成本并使废物具有新的资源状态,已建议通过使用开放的混合微生物培养物(MMC)生产有机废物的微生物生物聚合物和副产品。MMC强度和弱点分析表明,在复杂的原料应用方面,该系统可能与生产各种微生物聚合物有关。已经开发出用于将微生物群落定向到某些功能的原始原则,并且对该主题进行的研究仍然非常活跃。在本评论文章中,我们认真研究了过去几十年来发现的微生物富集策略,以使开放MMC的生物聚合物生产成为工业现实。
新兴添加剂制造技术提供的多功能性(例如,3D打印和按需沉积)使得个性化医学的快速生产能够产生。这些技术的按需定制功能为护理或分布式药物制造和复合应用提供了新的途径。设计原理的质量用于调查狭窄治疗指数(WARFARIN),选择性5-羟色胺再摄取抑制剂(Citalopram)和医学对策(DoxyCycline)药物的固体片剂剂型的生产。我们检查了药物片剂赋形剂半固体挤出和点播的活性药物成分(API)墨水的临界材料属性,关键过程参数和关键质量属性。详细的研究优化了API墨水配方 - 特别是相对于片剂半固体赋形剂,赋形剂温度和物理状态(即固体vs液体)和固化时间 - 允许API,赋形剂混合和重新分布。个性化药物剂量,调整剂量和锥形方案是制造的,证明了准确的API数量和所需的生产内容均匀性,如
摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
生物量(例如黑醋栗叶子)可以用作产生生物炭的碳化过程的前体,该过程是一种可用作土壤修正案的富含碳的物质。为了碳化生物量废物,这项工作开发了顶级上升气温剂。近距离,最终,扫描电子显微镜(SEM),热力学分析(TGA)和傅立叶变换红外光谱(FTIR)分析用于表征产生的生物炭。经过两个小时的气化,44.8 wt。%生物炭,固定碳含量为58.96%,从原料中产生,表明碳固醇具有很高的潜力。低水分含量可促进稳定性和处理方法,该分析还表明固定碳,灰分含量,挥发性物质和水分含量分别为3.86%,10.55%,26.63%和58.96%。生物炭的组成为63.32%的碳,2.75%的氢,1.56%的氮,4.10%的氧气和0.22%的硫。对碳化生物质的热分析显示有效的燃烧性能,其特征是在脱脂和炭氧化过程中实质性质量损失,然后在升高温度下进行灰分稳定。 FTIR光谱显示在1578 cm-1的吸收带(C-C)引起,这表明碳质材料的形成。 本研究表明碳化过程成功,并且生物炭适合用于催化,土壤修正和吸附。对碳化生物质的热分析显示有效的燃烧性能,其特征是在脱脂和炭氧化过程中实质性质量损失,然后在升高温度下进行灰分稳定。FTIR光谱显示在1578 cm-1的吸收带(C-C)引起,这表明碳质材料的形成。本研究表明碳化过程成功,并且生物炭适合用于催化,土壤修正和吸附。
摘要:在我们越来越多的电动社会中,锂离子电池是关键要素。要设计,监视或优化这些系统,数据起着核心作用,并且正在越来越兴趣。本文是对电池场中数据的评论。作者是实验者,旨在提供电池数据的全面概述。从数据生成到最先进的分析技术,本文以整体方法解决了与电池信息学相关的概念,工具和挑战。描述了不同类型的数据生产技术,并提出了最常用的分析方法。数据生产成本和数据生产和分析方法的异质性被视为在该领域开发数据驱动方法的主要挑战。通过提供对电池数据及其局限性的可理解描述,作者的目的是弥合电池实验者,建模者和数据科学家之间的差距。作为一种观点,开放的科学实践是减少数据异质性影响并促进来自不同机构的电池科学家与不同科学分支之间的合作的关键方法。
未经Smith Onandia Communications LLC同意,全部或部分复制。Smith Onandia Communications LLC不假定,并在此不承担任何责任。