[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
开花时间的控制对于生殖成功至关重要,并且对农作物中种子和果实产量以及其他重要的农业特征具有重大影响。核因子Y(NF -ys)是形成异三聚体蛋白复合物的转录因子,以调节各种生物过程所需的基因表达,包括植物中的开花时间控制。据我们所知,尚无关于促进植物早期开花表型的单个NF-YA亚基突变体的报道。在这项研究中,我们确定了编码NF-Y转录因子家族成员的SLNF-YA3B,是调节番茄开花时间的关键基因。NF-YA3B的敲除导致番茄的早期开花表型,而NF-YA3B的过表达延迟了转基因番茄植物的开花。NF-YA3B被证明在酵母三杂化测定中与多个NF-YB/NF-YC异二聚体形成异三聚体蛋白复合物。生化证据表明,NF -YA3B直接与单个花桁架(SFT)启动子的CCAAT顺式元素结合以抑制其基因表达。这些发现发现了NF-YA3B在调节番茄开花时间中的关键作用,并且可以应用于农作物中开花时间的管理。
开花时间的控制对于生殖成功至关重要,并且对农作物中种子和果实产量以及其他重要的农业特征具有重大影响。核因子Y(NF -ys)是形成异三聚体蛋白复合物的转录因子,以调节各种生物过程所需的基因表达,包括植物中的开花时间控制。据我们所知,尚无关于促进植物早期开花表型的单个NF-YA亚基突变体的报道。在这项研究中,我们确定了编码NF-Y转录因子家族成员的SLNF-YA3B,是调节番茄开花时间的关键基因。NF-YA3B的敲除导致番茄的早期开花表型,而NF-YA3B的过表达延迟了转基因番茄植物的开花。NF-YA3B被证明在酵母三杂化测定中与多个NF-YB/NF-YC异二聚体形成异三聚体蛋白复合物。生化证据表明,NF -YA3B直接与单个花桁架(SFT)启动子的CCAAT顺式元素结合以抑制其基因表达。这些发现发现了NF-YA3B在调节番茄开花时间中的关键作用,并且可以应用于农作物中开花时间的管理。
a 意大利帕多瓦大学医学系 - DIMED b 意大利帕多瓦帕多瓦大学医院病理学系 c 意大利特雷维索 Marca Trevigiana ULSS2 医院病理学系 d 意大利帕多瓦威尼托肿瘤研究所 IOV-IRCCS e 意大利帕多瓦帕多瓦大学医院外科、肿瘤学和胃肠病学系(DiSCOG)普通外科 3 f 意大利维罗纳大学与医院信托病理学科诊断与公共卫生系 g 意大利热那亚大学外科科学与综合诊断学系(DISC)解剖病理学 h 意大利热那亚 IRCCS Ospedale Policlinico San Martino,意大利热那亚大学外科科学与综合诊断学系(DISC) i 病理学研究单位,Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, 福贾, 意大利
摘要:抗癌药物光神霉素 (MTH) 已被提议用于药物再利用,因为人们发现它是 β-地中海贫血患者的红系前体细胞 (ErPC) 中胎儿血红蛋白 (HbF) 产生的有效诱导剂。在这方面,先前发表的研究表明,MTH 在诱导红系细胞中 γ-珠蛋白基因表达增加方面非常活跃。这具有临床意义,因为已经确定 HbF 诱导是治疗 β-地中海贫血和改善镰状细胞病 (SCD) 临床参数的有效方法。因此,识别 MTH 生化/分子靶点具有重要意义。这项研究受到最近有力证据的启发,这些证据表明,γ-珠蛋白基因的表达在成人红系细胞中受不同转录抑制因子的控制,包括 Oct4、MYB、BCL11A、Sp1、KLF3 等。其中,BCL11A 非常重要。本文报告了证据表明,在 MTH 介导的红细胞分化过程中,BCL11A 基因表达和生物学功能发生了改变。我们的研究表明,MTH 的作用机制之一是下调 BCL11A 基因的转录,而第二种作用机制是抑制 BCL11A 复合物与 γ 珠蛋白基因启动子的特定序列之间的分子相互作用。
在岛上(env a -env d)和高度的三维表示,并标有El Teide Stratovolcano的峰值。G。G的近似分布。 Eisentrauti和G. G。与红线一起用黑线和系统发育进化枝分开(Thorpe等人1993; Richard&Thorpe 2001;布朗等人。 2006)。 G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。1993; Richard&Thorpe 2001;布朗等人。2006)。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。 采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。G. G。 Insulanagae仅发生在近海胰岛Roque de Fuera de Anaga上。采样区域显示了黑色圆圈,用于基因型环境协会(GEA)的南北采样区域以蓝色为彩色。
Promoter 35s from the cauliflower mosaic virus (CAMV P35S) Promoter 35s from the leper mosaic virus (FMV P35S) Promoter NOS NOS from Agrobacterium Tumefaciens (PNOS) Terminator nose from AGROBACTERIUM Tumefaciens (tnos) Hygroscopicus Gen Barnase from Bacillus Amyloliquefaciens Gen EPSPS from Agrobacterium Tumefaciens, Szczep CP4 Gen GOX with Ochrobactrum Anthropi Gen Pat from Streptomyces Viridochromogenes NPTII gene from Escherichia coli Gen Cry1AB/AC Construct Promoter 35s from the Cauliflower mosaic病毒/Gen PAT与链霉菌的病毒蛋白色,CAMV p35s/pat)构造CTP2-CP4 EPSPPNOS/NPTIA构建体CAMV
Zineb Sbihi、Kay Tanita、Camille Bachelet、Christine Bole、Fabienne Jabot-Hanin 等人。鉴定导致 XIAP 缺乏的 XIAP 基因中的种系非编码缺失揭示了关键启动子序列。临床免疫学杂志,2022 年,42 (3),第 559-571 页。�10.1007/s10875-021-01188-z�。�hal-03864194�
从睾丸释放的精子经历成熟过程并通过附睾运输获得使卵子受精的能力。附睾分为四个区域,每个区域都有独特的形态、基因谱、腔内微环境和截然不同的功能。为了研究附睾起始节(IS)中相关基因的功能,通过 CRISPR/Cas9 技术建立了一种新的 IS 特异性小鼠模型——Lcn9-Cre 敲入(KI)小鼠系。TAG 终止密码子被 2A-NLS-Cre 盒替换,导致 Lcn9 和 Cre 重组酶共表达。从出生后第 17 天首次观察到 IS 特异性 Cre 表达。使用 Rosa26 tdTomato 报告小鼠,Cre 介导的 DNA 重组仅在主细胞中检测到。使用 Lcn9-Cre 小鼠与携带 Tsc1 floxed 等位基因 (Tsc1 flox/+) 的小鼠品系杂交,进一步证实了附睾 IS 特异性 Cre 体内活性。Cre 表达不影响正常发育或雄性生育力。与之前报道的任何附睾特异性 Cre 小鼠不同,新型 Lcn9-Cre 小鼠品系可用于引入整个 IS 特异性条件基因编辑以进行基因功能研究。
美国加利福尼亚州帕洛阿尔托市斯坦福大学医学院神经外科系(M. Lim);瑞士苏黎世大学医院和苏黎世大学神经和脑肿瘤中心系(M.W. ) ); SorbonneUniversité,研究所 - 帕里斯脑研究所 - ICM,Inserm,CNRS,AP-HP,HôpitalUniversitaireLaPitiéSalpêtrière,Paris,Paris,Paris,France(A.I. ) );德国法兰克福歌德大学法兰克福癌症研究所(J.S. ) );德国法兰克福歌德大学医院神经机学研究所(J.S. ) );分子神经肿瘤学单位,神经学研究所C. Besta,意大利米兰(G.F.);俄亥俄州立大学综合癌症中心转化治疗计划,美国俄亥俄州哥伦布(R.R.R. );美国密苏里州圣路易斯华盛顿大学医学院医学系(G.A. ) );耶鲁大学医学院神经病学系,美国康涅狄格州纽黑文市(J.B.,A.O。 );美国加利福尼亚州旧金山的加利福尼亚大学神经病学和神经外科系(J.W.T. ) );神经肿瘤学部,Lyon Hospices De Lyon,Synatac团队,Inserm u1314/CNRS UMR 5284,LYON UNIONITITURE CLAUDE BERNARD LYON 1,LYON 1,LYON,LYON,法国(J.H.美国加利福尼亚州帕洛阿尔托市斯坦福大学医学院神经外科系(M. Lim);瑞士苏黎世大学医院和苏黎世大学神经和脑肿瘤中心系(M.W.); SorbonneUniversité,研究所 - 帕里斯脑研究所 - ICM,Inserm,CNRS,AP-HP,HôpitalUniversitaireLaPitiéSalpêtrière,Paris,Paris,Paris,France(A.I.);德国法兰克福歌德大学法兰克福癌症研究所(J.S.);德国法兰克福歌德大学医院神经机学研究所(J.S.);分子神经肿瘤学单位,神经学研究所C. Besta,意大利米兰(G.F.);俄亥俄州立大学综合癌症中心转化治疗计划,美国俄亥俄州哥伦布(R.R.R.);美国密苏里州圣路易斯华盛顿大学医学院医学系(G.A.);耶鲁大学医学院神经病学系,美国康涅狄格州纽黑文市(J.B.,A.O。);美国加利福尼亚州旧金山的加利福尼亚大学神经病学和神经外科系(J.W.T.);神经肿瘤学部,Lyon Hospices De Lyon,Synatac团队,Inserm u1314/CNRS UMR 5284,LYON UNIONITITURE CLAUDE BERNARD LYON 1,LYON 1,LYON,LYON,法国(J.H.);加拿大魁北克蒙特利尔蒙特利尔大学蒙特利尔神经学院医院脑肿瘤研究中心神经病学系(K.P.);荷兰乌得勒支大学乌得勒支大学医学肿瘤学(F.D.V.);日本Ishikawa Kanazawa大学神经外科系(M.K.);海德堡大学神经病学诊所,德国海德堡国家肿瘤疾病中心(A.W.);美国北卡罗来纳州夏洛特市莱文癌症研究所的神经肿瘤科(A.S.);南佛罗里达大学莫菲特癌症中心,美国佛罗里达州坦帕市(S.S.);美国纽约,纽约,纽约,纪念斯隆·凯特林癌症中心神经和人类肿瘤学和发病机理计划(I.K.M.,A.O。);布里斯托尔·迈尔斯·斯奎布(Bristol Myers Squibb),美国新泽西州普林斯顿(M.R.,R.S.,D.W.); Syneos Health,美国北卡罗来纳州莫里斯维尔(M. Lee);美国马萨诸塞州波士顿市Dana-Farber/Harvard Cancer Center的神经肿瘤学中心(D.A.R.)