测试是在一台 3,000,000 磅的液压测试机上对 2 英尺宽的淬硬钢样本进行的。测试件是一个 3/4 x 54 x 72 英寸的插入件。焊接到 1 英寸的拉板上,得到一个 6 英尺宽、18 英尺长的平面尺寸的样本,不包括拉头。在给定样本上进行第一次断裂测试后,通常会切除断裂部分,并使用插入件的剩余部分(3/4 英寸x72 英寸)用于第二次测试。前一种断裂尺寸在备注栏中用 (A) 表示,后一种断裂尺寸用 (B) 表示。凹槽长度 1 英寸。尺寸如 m 部分所示
5.0 简介 135 5.1 PDF 模型 136 5.1.1 对数正态 (LN) 模型 136 5.1.2 负指数 (NE) 模型 136 5.1.3 伽马-伽马 (GG) 模型 137 5.1.4 逆高斯伽马 (IGG) 模型 138 5.1.5 正态 (N) 模型 139 5.1.6 分数指数 (FE) 模型 139 5.1.7 指数威布尔 (EW) 模型 139 5.1.8 三参数威布尔 (W3) 模型 140 5.2 PDF 模型的数值比较:球面波 140 5.2.1 实验数据和计算机模拟数据 140 5.2.2 计算机模拟数据分析 146 5.2.3 大口径情况146 5.3 长距离传播的计算机模拟:高斯光束波 147 5.3.1 结果 148 5.3.2 总结 149 5.3.3 误码率数据分析 150 5.4 海洋环境中的实验数据:跟踪准直光束 150 5.4.1 结果 150 5.4.2 总结 151 5.5 PDF 模型的统计比较 152 5.5.1 统计测试 153 5.5.2 弱辐照度波动:质心跟踪实验数据 154 5.5.2.1 单像素孔径:D = 0.16 毫米 155 5.5.2.2 像素孔径:D = 4.57 毫米 156 5.5.2.3 像素孔径:D = 8.96 毫米 158 5.6 PDF 模型的数值比较:未跟踪的准直光束 159 5.6.1 PDF 模型对平均 BER 和衰落概率的影响 159 5.6.2 计算机模拟结果 160 5.7 准直高斯光束的室外测量 169
随着钢材强度越来越高、船体受力越来越大,必须采取更多的预防措施来防止断裂。现有方法已经能够确定安全的应力水平/缺陷尺寸组合,前提是缺陷嵌入在标准质量的材料中。然而,这种 LS 并不是唯一的故障源。更可能的来源是位于低韧性非典型区域(如焊缝的热影响区)的裂纹。这样的缺陷将变得不稳定,并在更低的应力水平下开始扩展。那么问题是:从“坏区域”出现的裂纹在到达周围的“好(标准质量)材料”时会被阻止吗?裂纹阻止设计的概念并不新鲜。Pellini 和他在 NRL(l) 的同事多年来一直倡导“裂纹阻止”理念。现在需要的是更精确地描述钢材的止裂能力——类似于佩里尼的FAD(断裂分析图),但要考虑在不同应力水平下被母材和连续焊接影响区域止裂的运行裂纹长度。
恒定载荷试验 . . . . . . . . . . . . . . . . . . . . . . . . 减荷试验. . . . . . . . . . . . . . . . . . . . . . . 恒定应力试验. . . . . . . . . . . . . . . . . . . . . . . 荷载类型的重要性. . . . . . . . . . . . . . . . . . . . . . 疲劳裂纹扩展速率. . . . . . . . . . . . . . . . . . . . . . . .
测试是在一台 3,000,000 磅的液压测试机上对 2 英尺宽的淬硬钢样本进行的。测试件是一个 3/4 x 54 x 72 英寸的插入件。焊接到 1 英寸的拉板上,得到一个 6 英尺宽、18 英尺长的平面尺寸的样本,不包括拉头。在给定样本上进行第一次断裂测试后,通常会切除断裂部分,并使用插入件的剩余部分(3/4 英寸x72 英寸)用于第二次测试。前一种断裂尺寸在备注栏中用 (A) 表示,后一种断裂尺寸用 (B) 表示。凹槽长度 1 英寸。尺寸如 m 部分所示
摘要 — 在本文中,我们借助 MATLAB 模拟器研究了在 IBM-Q 硬件上运行的 Harrow-Hassidim-Lloyd (HHL) 量子算法中的错误传播和生成。HHL 是一种量子算法,在解决线性方程组 (SLE) 时,它可以比最快的经典算法(共轭梯度法)提供指数级加速。但是,如果没有错误校正,由于其复杂性,即使在 2 变量系统中也无法给出正确的结果。在本研究中,在 IBM-Q 中实现了 2 变量 SLE 的 HHL 量子电路,并在电路的每个阶段之后提取错误并与 MATLAB 模拟器进行比较。我们确定了三个主要的错误来源,即单量子位翻转、门不保真和错误传播。我们还发现,在辅助位旋转阶段,错误变大,但编码解决方案仍然具有高保真度。然而,在逆量子相位估计之后,解决方案大部分丢失,而逆量子相位估计是有效提取解决方案所必需的。因此建议,如果纠错资源有限,则应将其添加到电路的后半部分。
在许多情况下,对对象进行排名或排序是一个自然问题。从数学上讲,这项任务相当于从有限集合中找到“好的”排列,或者更一般地,从好的排列分布中抽样。这可能出奇地困难。例如,假设我们观察到一组成对的相互作用,如竞争、偏好或冲突,每个相互作用都表明一个对象的排名高于另一个对象,我们的目标是将它们从最强到最弱进行排序。类似地,我们可能想要重建节点加入不断增长的网络的顺序 [1,2],例如在一场流行病中,接触追踪表明一个人感染了另一个人。在这种情况下,找到一个排列,使排序“错误”的违规数量最少,是 NP 难的,也就是说,这是计算机科学中最难的优化问题之一 [3]。即使存在与所有观察到的相互作用一致的排列,计算这种排列的数量或计算给定对象的平均位置也是#P-完全的[4,5]。因此,所有这些问题被认为在最坏情况下会花费指数时间。成对比较可以表示为有向图G,其边(i,j)表示i≺j,即i“击败”j,因此可能排名高于j。我们假设一个生成模型:给定一个真实排列π,我们以概率P(G |π)[6]观察到G。如果所有排列都是先验相等的,并且如果我们以概率f(πi,πj)独立地观察到每个i≺j,则后验具有以下形式
通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
Wham(2011)42%Spice 1(2009)29%Spice 2,2+,2x,2y(2010)增加了冰层倾斜倾斜Spice Mie(2011)适合散射功能29%Spice Lea(2012)适合散射各向异性20%Spice 20%Spice(Munich)(Munich)(Munich)(2013年)7-string Forling 17%Spice 3(cobe)fif forpition 1 fort fiveling 1 forles fiveling 1 forles lifes 3(cobe)(2014)(2014年)(2014年)(2014年)(2014年)(2014年)(2014年)(2014年) 11%Spice 3.0(2015)改进了RDE,Ang。sens。拟合10%Spice 3.1,3.2(2016)85弦,相关模型拟合<10%Spice HD,3.2.2(2017)直接HI和DOM Sens。,电缆,DOM TILT SPICE EMRM(2018)基于吸收的基于吸收的基于吸收的单Spice BFR(2020)基于双重双歧杆(2020)基于双重的Anisotropy Bfr+Spice+2022222222222222(202各向异性,2D倾斜