三菱重工株式会社 (MHI) 除了主营业务的发射服务和与空间站和国际太空探索相关的工作外,还致力于小型卫星的开发。我们最近收到了日本宇宙航空研究开发机构 (JAXA) 的订单,要求开发和运营 RAPid 创新有效载荷演示卫星 3,并正在推进这颗卫星的开发,以确保在低成本和短期开发的限制范围内的可靠性。此外,在小型卫星推进系统的开发方面,我们已经完成了绿色推进剂推进系统的开发和在轨演示,并计划在未来进入小型卫星市场。此外,我们还收到了 JAXA 的订单,要求为月球探测智能着陆器 (SLIM) 提供主推进器和推进剂箱,目前正在进行开发。我们还计划将它们应用于未来使用小型卫星或探测器的太空探索。
lockheedmartin.com › Loc... PDF 2021年4月27日 — 2021年4月27日 enhanced efforts towards digital transformation. Climate Resiliency ... development phase to improve product reliability, availability,. 50 页
的砖块,而全球每年消耗的砖块约为 15000 亿块。为了满足这种过高的需求,使用过的原材料消耗得非常快,人们经常尝试探索结合替代可用废料的可能性,从而同时实现它们的利用和处理。使用不同类型的原材料包括有机可燃废料,例如烟头[1]、木炭[2]、甘蔗渣[3-7]、果壳[2,3,7]、纸[4,5]、花生壳[6]、橘皮[7]、塑料[8]、粪便[9]等,作为添加剂。可燃材料在烧制砖块的过程中会被消耗,这会导致砖块的孔隙率增加。这些添加剂会导致密度降低、吸水率增加和抗压强度降低。由于可燃材料浸渍的耐火粘土砖孔隙率高,另一个值得关注的问题是结构完整性的丧失。因此,砖块中添加的可燃材料的数量大多限制在 10-15% 左右。同样,不可燃废物如花岗岩 [10]、玻璃 [11,12],
“在过去的几年中,众所周知,弗吉尼亚港,尤其是朴次茅斯海洋码头,是海上风力行业的主要中大西洋物流中心。“该协议利用了PMT的潜力,并巩固了弗吉尼亚州在这个不断增长和竞争的领域中的领导地位。该港口准备支持Dominion Energy以及所有将确保弗吉尼亚州海上风能成功的业务和工作。”
“我们对 Acorn AI 团队的科学严谨性印象深刻,他们为创新注册试验的设计提供了科学严谨的理论基础,该试验结合了外部对照组,用于使用 MDNA55 治疗复发性胶质母细胞瘤 (rGBM)。他们的专业知识和与思想领袖的合作努力有助于向 FDA 证明注册试验中精心设计的外部对照的有效性。FDA 接受这一独特设计将加快完成 rGBM 的 3 期试验,使人们能够更早地获得 MDNA55,用于治疗预后不良且未满足需求高的疾病。”
摘要 本研究调查了位于螺旋桨尾流中的基于叶片的推力矢量系统的效率,该系统可在净推力损失最小的情况下支持前向力。矢量系统本身既可放置在独立螺旋桨配置中,也可放置在机翼螺旋桨配置中。在代顿大学低速风洞 (UD-LSWT) 使用现成的 R/C 螺旋桨进行静态和基于风力的实验。敏感性分析确定了叶片偏转角对推力矢量的影响以及螺旋桨相对于集成机翼上表面的位置对系统性能的影响。静态测试结果表明,当矢量设计放置在机翼中时,叶片性能显著改善。在两种螺旋桨俯仰情况下:75° 和 90°,随着叶片偏转角的逐渐增加,实现了推力矢量,随之改变了俯仰力矩。标准 90° 螺距方向的一体式机翼螺旋桨系统风洞试验结果显示,在低于 0.3 的前进比下成功实现推力矢量控制,这对于大多数相关应用而言是实用的;螺旋桨叶片系统的 75° 螺距方向观察到推力矢量控制能力扩展到 0.7 的前进比。敏感性分析表明,暴露在流动自由流中的螺旋桨的整体效率高于完全嵌入模拟机翼的螺旋桨,尽管嵌入式壳体具有更好的推力矢量控制能力。致谢 诚挚感谢亨利·卢斯基金会通过克莱尔·布思·卢斯 (CBL) 研究项目提供的支持。另一位主要捐助者蔡杰龙先生(Jacky)对本工作期间的持续指导深表感谢。
图片列表 图 1 KC-130T 的三视图 3 图 2 AeroUnion P-3 Orion 4 图 3 EPCS 安装位置 7 图 4 螺旋桨开发流程图 10 图 5 KC-130T 油门象限图 16 图 6 油门止动装置 22 图 B-1 HS 测试单元数据 - PLA 瞬态 60-MAX TQ 62 图 E-1 目录,54H60-77E 控制系统飞行测试报告 72
摘要 近年来,电力推进系统在船舶工业中的应用越来越广泛。螺旋桨的控制一直是该行业优先考虑的设计挑战。螺旋桨控制的关键问题之一是船舶的速度控制。合适的螺旋桨控制策略应具有经济效益,同时确保船舶电力系统的稳定性、可靠性和电能质量。本文提出了一种改进的螺旋桨控制策略来提高/降低船舶速度。该方案包括两种策略:最大加速度策略和高效运行策略。最大加速度策略旨在快速达到最终速度设定值。另一方面,高效运行策略被认为可以提高船舶电力系统的可靠性和电能质量,并且加速度略高于传统方法。此外,还采用机械指标来比较各种变速策略的性能。利用该指标(即寿命损失 (LoL)),分析了变速操作对螺旋桨轴疲劳的影响,并讨论了所提方法在提高螺旋桨寿命方面的优势。模拟表明,采用所提出的变速方案可将螺旋桨机械磨损降低至传统方法的约 1.8%,从而延长其寿命。
无人驾驶飞行器 (UAV) 越来越受欢迎,这得益于其在民用、教育、政府和军事领域的应用。然而,有限的机载能量存储严重限制了飞行时间并最终影响可用性。推进系统在 UAV 的总能耗中起着至关重要的作用;因此,有必要针对给定的任务概况确定推进系统组件(即螺旋桨、电动机和电子速度控制器 (ESC))的最佳组合。不同组件有数百种选择,但大多数组件几乎没有性能规格。通过研究各种现有的长航时飞机,Aero-Naut CAM 碳纤维折叠螺旋桨被确定为最常用的商用现货螺旋桨类型。然而,公开文献中没有关于 Aero-Naut CAM 碳纤维折叠螺旋桨的性能数据。本文介绍了 40 个 Aero-Naut CAM 碳纤维螺旋桨的性能测试,这些螺旋桨为 2 叶片配置,直径为 9 到 16 英寸,螺距值各不相同。螺旋桨的测试转速为 3,000 到 7,000 RPM,前进流为 8 到 80 ft/s,具体取决于螺旋桨和测试设备的限制。本文介绍了在静态和前进流条件下测试的 40 个螺旋桨的结果,并讨论了几个关键的观察结果。生成的数据将在 UIUC 上提供下载