摘要 - 现在,混凝土用于最大的建筑项目,并且在不久的将来,没有其他选择。有必要开发更好的质量混凝土,以延长生存更长的生存并具有提高机械品质,以延长任何结构的使用寿命,因为大量混凝土被用于新建筑工作。不可能改变其天生的易碎性或对任何混凝土结构的拉伸强度的要求。纤维增强混凝土(FRC)似乎是可行的替代品。聚酯和聚丙烯纤维(PP)作为混凝土中的二级加固以改变其脆性特性的实际应用是本研究论文的主要主题。在这项调查中采用了M40级混凝土等级。结果,将不同比例的聚酯和聚丙烯纤维添加到混凝土中。按该顺序按混凝土的重量进行0.32、0.37、0.42和0.47。为了研究聚酯和聚丙烯在混凝土中的使用,进行了一系列受控的实验室测试。对于压缩和弯曲强度,仅在第一个样品中评估了基本混凝土混合物。在0.32、0.37、0.42和0.47%的聚丙烯纤维中分别评估第二个样品的抗压强度和弯曲强度,将其添加到混凝土混合物中。在第三个混凝土样品中测试了聚酯和聚丙烯纤维。演示了如何在混凝土中添加纤维可以提高其质量。
Taras Lyutyy Sumy State University (Ukraine), Publication Chair Joanna Michalska Silesian University of Technology (Poland), Publication Co-Chair Yurii Shabelnyk Sumy State University (Ukraine), Secretary Artur Maciej Silesian University of Technology (Poland), Finance & Exhibits Chair Oleksii Drozdenko Sumy State University (Ukraine), Finance Co-Chair Olena Tkach Sumy州立大学(乌克兰),明智的主席Anna Marchenko Sumy州立大学(乌克兰),奖和授予授予的联合主席Alicja Kazek-kazek-kęsik-kęSiksilesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian silesian siles&助学(乌克兰),学生和YP活动联席主席Marta Wala Silesian技术大学(波兰),学生和YP活动联席主席Matteo Bruno Lodi Cagliari大学(意大利),学生和YP活动联合主席
12. 电学性质................................................................................................321 12.1 简介...............................................................................................321 12.2 金属、绝缘体和半导体:能带理论....................................321 12.2.1 金属.......................................................................................324 12.2.2 半导体.................................................................................325 12.2.3 绝缘体.......................................................................................328 12.3 电导率的温度依赖性....................................................................328 12.3.1 金属.......................................................................................329 12.3.2 本征半导体.......................................................................330 12.4 非本征(掺杂)半导体的性质....................................................335 12.5 使用非本征(掺杂)半导体的电气设备.....................................336 12.5.1 p,n 结.....................................................................................336 12.5.2 晶体管................................................................................342 12.6 电介质...............................................................................................344 12.7 超导性...............................................................................................347 12.8 温度测量:教程��������������������������������������������������������������������������������352
摘要 当今科技发展迅速,各种新奇有趣的材料层出不穷。智能聚合物就是其中一种材料。智能聚合物是具有特殊分子结构的聚合物材料,这些分子结构可以响应不同的外部影响并改变形状。这些聚合物可以响应环境变化而改变形状、体积或其他特性。智能聚合物最显著的特点是它们能够直接响应环境刺激。智能聚合物的形状改变能力通常取决于环境因素,例如热量、湿度、pH 值、光或电。当聚合物分子内的键发生结构变化时,就会发生这种情况。智能聚合物的使用领域非常广泛。它们在医药、纺织、汽车、电子和能源等许多行业中发挥着重要作用。人们对智能聚合物的兴趣日益浓厚,智能聚合物经常用于药物输送系统、生物材料和智能材料的开发。考虑到这些因素,本综述提供了有关智能聚合物、其特性和应用领域的信息。
铁是一种丰富的化学元素,自古以来就以钢和铸铁的形式用于制造工具、器皿和武器。[1,2] 钢铁目前每年的产量为 1.4 亿吨,是人类文明中最广泛利用的材料之一。[1] 如此高的产量和当前加工技术的高碳足迹,使钢铁成为现代社会减少材料对环境影响的首选材料。[3] 虽然全世界的大部分钢铁生产都用于制造致密的建筑结构元件,但人们也在探索将多孔铁块用于催化、[4] 储能、[5] 组织再生 [6] 和结构应用。[7] 对环境影响较小的轻质结构的需求日益增长,人们对此类多孔金属以及它们对旨在更有效地利用自然资源的非物质化战略的潜在贡献的兴趣日益浓厚。海绵铁是通过将矿石在熔点以下直接还原而获得的,是多孔金属最早的例子之一。[8] 由于其强度相对较低,这种多孔铁在过去被用作制造致密结构的前体。多孔金属的低强度源于众所周知的材料强度和相对密度之间的权衡。[9] 根据 Gibson-Ashby 分析模型的预测,[10] 多孔和胞状结构的强度和刚度与固相相对密度 (φ) 呈幂律关系:P∼φm,其中 P 是关注的属性,m 是缩放指数。重要的是,高度多孔的大型结构(φ<0.20)通常表现出的刚度和承载能力远低于这种简单分析模型的预期水平。 [11] 事实上,实验和计算研究表明,当材料的相对密度接近其渗透阈值时,只有一小部分固相能有效地增加多孔结构的刚度。[12,13] 这是因为在多孔网络结构整体变形过程中存在未受载荷的悬挂元素。[14]
所提供的作品“原样”。麦格劳 - 希尔(McGraw-Hill)及其许可人对使用工作的准确性,充分性或完整性或结果不保证或保证,包括可以通过超链接或otherwise通过工作访问的任何信息,并且明确不违反任何保修,明确或暗示,包括但不限于商品或特定用途的植入保修,包括但不限于植入的保修。McGraw-Hill及其许可方不保证或保证工作中包含的功能将符合您的要求,或者其操作将不间断或无错误。McGraw-Hill及其许可人不应对您或其他任何人承担任何不准确,错误或遗漏的责任,无论原因,在工作中或对此造成的任何损害赔偿。麦格劳 - 希尔(McGraw-Hill)对通过工作访问的任何信息不承担任何责任。在任何情况下,麦格劳 - 希尔(McGraw-Hill)和/或其许可人不得对由于使用或无法使用工作而造成的任何间接,偶然,特殊,惩罚性,结果,结果或类似损害均承担责任,即使已告知其中任何一个损害的可能性。这种责任限制应适用于任何索赔或造成任何索赔或引起合同,侵权或其他索赔。
例子:矩阵加法:2n 2 +2n+1 O(n 2 ),矩阵乘法:2n 3 +3n 2 +2n+1 O(n 3 )算法斐波那契(a,b,c,n) { a:=0; b:=1; write(a,b); for i:=2 to n step 1 do { c:=a+b; 时间复杂度:5n-1 频率计数:O(n) a:=b; b:=c; write(c); } } 第一种方法:算法 Rsum(a,n): // 使用递归添加元素 { count:=count+1; // 对于 if 条件 if(n<=0) then count:=count+1; // 对于 return stmt return 0; else return Rsum(a,n)+a[n]; // 用于加法、函数调用和返回 } 时间复杂度: 2(对于 n=0)+ TRsum(n-1) 2+TRsum(n-1) => 2+2+TRsum(n-2) …….. n(2)+TRsum(0) => 2n+2 n>0 第二种方法: StatementNum 语句每次执行的步骤频率 n=0 n>0
欢迎来到NCB和RAM Property Group的新精品开发项目Sundance 7。由屡获殊荣的建筑师John Doak设计的Sundance设计的设计元素灵感来自加勒比海的美丽。这种独家的海滨开发仅由12个三居室单元组成,提供了独特的私人和豪华的岛屿生活体验。通过这款豪华公寓的宽阔的窗户欣赏壮丽的海景。陶醉于从自己家中欣赏海到天空景色的极好机会。拥有10英尺的天花板和充足的自然光线,每个住宅都有一个开放式布局,并配有定制家具和宽敞的露台,是娱乐的出色选择。更重要的是,每个住所都是精心设计的,以最大程度地减少噪音并促进隐私。圣丹斯(Sundance)设有度假村风格的游泳池,热水浴缸和小屋,它们都靠在风景秀丽的海滨背景下。此外,还有郁郁葱葱的花园和绿色空间供居民享受户外活动。该物业结合了精致的能量功能,具有更可持续的生活方式。标准安装包括地热冷却,LED照明和尖端节能设备。使用有机材料和当代设计与宁静的海洋的混合物无缝地捕捉了加勒比海环境的美丽。
在本说明中,我们重新审视了形式的神经常见微分方程(节点)的流量近似特性问题κx = a(t)σ(w(t)x + b(t))。近似特性已被视为最近文献中流量的可控性概率。当参数的维度等于神经网络的输入时,神经极被视为狭窄,因此宽度有限。我们得出了狭窄节点在近似值的近似流中的关系。由于现有的浅神经网络近似特性的结果,这有助于使用狭窄的神经ODE近似地估算哪种动态系统的流量。虽然在文献中已经建立了狭窄节点的近似特性,但这些证明通常涉及广泛的构造或需要从控制理论中调用深层可控性定理。在本文中,我们提供了一种更简单的证明技术,它仅涉及ODES和Gr'onwall的引理。此外,我们提供了一个估计狭窄节点所需的开关数量,以模仿单层宽神经网络作为速度领域的节点的行为。
