1个国家材料研究所,原子街,编号405a,077125罗马尼亚玛格勒; ciobanucs@gmail.com(C.S.C.); simonaiconaru@gmail.com(S.L.I。); catalin.negrila@infim.ro(c.c.n.); ghegoiuliliana@gmail.com(l.g。)2 Laboratoire Ond et Milieux Complexs(LOMC),法国国家科学研究中心(CNRS UMR 6294),Le Havre Normandy,75 Rue Bellot,法国76600 RUE BELLOT; damien.leduc@univ-lehavre.fr(D.L.); elkettani@univ-lehavre.fr(M.E.C.E.K.); philippe.zelmar@univ-lehavre.fr(P.Z.)3机械学系,布加勒斯特大学Politehnica,bn 002,313 Splaiul Independentei,6,060042 Bucharest,罗马尼亚4个细胞和分子病理学系Stefan S. Nicolau病毒学学院,罗马尼亚学院,罗马尼亚学院cbleotu@yahoo.com 5国家微型和纳米材料中心,布加勒斯特大学Politehnica,罗马尼亚布加勒斯特,布加勒斯特; truscaroxana@yahoo.com *通信:dpredoi@gmail.com(D.P.); predoi@gmail.com(m.v.p.)
生物印刷是一项蓬勃发展的技术,在组织工程和再生医学中有许多应用。然而,大多数用于生物打印的生物材料取决于使用牺牲浴和/或非生理刺激的使用。可打印的生物材料在其组成和机械性能方面通常也缺乏可调节性。为了应对这些挑战,作者介绍了一种新的生物材料概念,他们称其为“可单击的动态生物联系”。这些生物学使用可以打印的动态水凝胶,并通过点击反应进行化学修饰,以在打印后使用印刷对象的物理和生化特性。特别是使用透明质酸(HA)作为感兴趣的聚合物,研究者研究了使用基于富酯的基于硼酸酯的交联反应来产生可打印和细胞增强的动态水凝胶,从而允许生物涂纸。通过生物正交点击部分对产生的动态生物学进行化学修饰,以允许使用带有互补点击功能的分子进行各种后印刷修饰。作为概念的证明,作者执行了各种后打印的修饰,包括调整聚合物组成(例如HA,HA,硫酸软骨素和明胶)和Sti效应,以及通过粘附性肽固定化(即,RGD peptide)来促进细胞粘附。结果还表明,这些修改可以在时间和空间中控制,为4D生物打印应用铺平了道路。
背景:将细菌疫苗用作潜在的基于细菌的癌症治疗(BBCT)提出了一种创新的方法,将这些疫苗转化为能够在医学中发挥双重作用的多功能工具。材料和方法:这项研究旨在进行体外,免疫独立的实验,以研究疫苗衍生的细菌毒素在各种癌细胞系上的抗癌特性。在两个癌细胞系(SKG和HCG和HCG)和一个正常的大鼠胚胎纤维纤维分布(Ref)细胞系(SKG和HCG)(SKG和HCG)上测试了六个浓度的DTP疫苗(5 x 10 -4,25 x 10 -4,25 x 10 -4,25 x 10 -4,125 x 10 -6,625 x 10 -7,312 x 10 -7,312 x 10 -7和15 x 10 -6 µg/ml)。使用晶体紫色测定法对细胞毒性作用进行了评估,以确定每种毒素浓度的细胞死亡百分比,从而导致IC 50值的计算。凋亡作用和其他细胞病理学变化。结果:发现细菌毒素对SKG和HCAM癌细胞系的显着毒性作用(P <0.001)。相比之下,对正常REF细胞系的毒性作用仅在最高的毒素浓度下才有明显。显微镜分析显示,用毒素处理的癌细胞的细胞学变化明显,对正常细胞的影响最小。
摘要 - 评估了四个Rebco CC的物理和电气特性:1)theva; 2)上海超越。技术; 3)日本法拉第工厂; 4)藤库拉。为了估算其物理特性,通过删除粘贴在胶带上的聚酰亚胺色带并在预锡后切割胶带来检查每个胶带的分层强度。还通过我们的金属悬挂过程研究了其厚度的均匀性和厚度的均匀性。用于评估其电气性能,在垂直于AB平面的各种外部磁场下在4.2 K下测量其临界电流。在自田77 K的液体氮浴中制造每条胶带的关节样品。在本文中为四个磁带描述了结果。
这项研究研究了使用连续的离子层吸附和反应方法(Silar)方法合成的锰(MNSE)薄膜的光学,结构和电性能(MNSE)薄膜,具有不同体积的三乙胺(TEA)作为络合物的浓度。MNSE薄膜在紫外线(UV)区域表现出很高的吸光度,根据茶浓度的不同,在0.61至0.91处达到峰值,并朝着近红外(NIR)区域下降。透射率从12.53%到92.17%不等,随着较高的茶浓度降低。膜的能带间隙从2.90 eV降低,用2 ml茶降低至2.30 eV,以10 mL的速度降低,突出了MNSE用于光伏应用的可调性。膜厚度从190.82 nm到381.63 nm不等,反映了与茶浓度的直接关系。从结构上讲,在立方相结晶的MNSE膜具有改善的结晶度和较高茶容量下的缺陷,这是晶体尺寸从20.10 nm增加到25.09 nm,并降低了位错密度和微疗法。形态分析揭示了中等茶浓度下的均匀谷物样结构,这对于光伏性能是最佳的。电性能强调了电阻率和电导率之间的权衡。膜在2 mL时表现出较高的2.72×10 s/cm的电导率,而10 mL时为1.02×10ିହs/cm。这些发现证实了MNSE薄膜对于太阳能电池中吸收层的适用性,尤其是在需要可调的光学和电气性能的情况下。通过改变茶浓度来控制这些特性的能力增强了材料在光伏以外的应用程序(包括光电和光电探测器设备)以外的应用。
蝴蝶豌豆花(Clitoria ternatea)是槲皮素的天然来源,槲皮素是一种具有各种生物学活性的类黄酮,包括抗氧化剂,抗炎症和抗菌特性。本研究旨在确定蝴蝶豌豆花提取物中的槲皮素水平,并测试其针对大肠杆菌和金黄色葡萄球菌的抗菌活性。使用HPLC方法在374 nm处使用HPLC方法的槲皮素分析显示,平均水平为42 ppm(4.2%w/w),方法验证包括精度,精度,线性性(𝑟2= 0.9959),LOD和LOD和LOQ分别为0.57 ppm和1.91 ppm。抗菌试验表明,蝴蝶豌豆花提取物分别抑制了大肠杆菌和金黄色葡萄球菌的生长,其抑制区最大,浓度分别为10.27±1.01 mm和12.28±0.09 mm的30%。该活性与槲皮素含量有关,槲皮素含量通过损坏细菌细胞壁和抑制生物膜形成等机制起作用。由于这种药理潜力,这些花可以作为药物和化妆品应用中的天然抗菌剂开发。©2025 SPC(SAMI Publishing Company),《亚洲绿色化学杂志》,用于非商业目的。
摘要背景:饮食纤维对于维持消化健康至关重要,尤其是在粮食供应有限的紧急情况下。目标:分析设计为紧急食品的高纤维谷物棒的化学,微生物和营养特性。方法:本研究使用了实验设计。谷物棒是由稻薯片和燕麦制成的,并根据化学和微生物学参数进行了测试。化学分析包括饮食纤维,碳水化合物,蛋白质,脂肪,矿物质和维生素,而微生物分析涵盖了总板块(TPC)(TPC)以及检测致病细菌(例如大肠杆菌,沙门氏菌,沙门氏菌和葡萄球菌),葡萄球菌和金葡萄球菌的含量标准,该标准是根据Indonesian Foodsians Andoneian Foodsose(BPOM)(BPOM)(BPOM)。该测试是从2023年11月3日至15日在印度尼西亚的PT Saraswanti Indo Genetech实验室进行的。结果:测试表明,混合浆果谷物含有9.43%的饮食纤维,超过BPOM标准。该产物不受重金属污染(砷,镉,汞,铅和锡)的污染,并且没有显示反式脂肪。微生物测试证实,该产物免受致病性微生物的保护,其总板数(TPC)和肠杆菌科在安全限制内。该产品还不含沙门氏菌或金黄色葡萄球菌。结论:这款高纤维谷物棒符合严格的食品安全和营养标准,使其适合作为紧急食品开发。其高纤维含量和缺乏有害污染物使其对灾害受害者的安全和营养。建议使用各种口味进行持续测试和开发,以提高紧急情况下年龄组的接受。
摘要:BI 2 TE 3含有合金在peltier冷却器中广泛使用,因为它们在近房间时的热电性能最高。然而,由于少数族裔载体激发在400 K左右加热时出现了少数族裔载体激发,因此其功绩的无量尺寸热图仅限于狭窄的温度窗口。在这里,我们在这里展示了如何通过合成合成的rickardite Rickardite矿物质来克服这个问题,Cu 3- x te 2,cu 3- x te 2,在p -type(bi bi,bi,sb)2 te 3中。由于将小的Cu掺入(BI,SB)2 TE 3的晶体结构以及在晶界处的Cu 3 -X TE 2的均匀沉淀,可以实现电子和热性能的显着增强。对于两个组合物,BI 0.5 SB 1.5 TE 3(BST-5)和BI 0.3 SB 1.7 TE 3(BST-3)的高平均ZT值(ZT AVE)为350至500 K之间的高平均ZT值(ZT AVE),峰值ZT值分别为467 K和1.30,分别为400 k,峰值为1.32。这些高ZT值导致CA的最大最大设备ZT相当高。1.15和在325至525 K之间的理论效率高达7%。此外,室温微硬度度得到了显着提高,这对于构建可靠且耐用的热电模块是可取的。■简介大量利用能源的不良结果激发了科学家寻找恢复废热的方法,以达到最高使用的不同领域,最高70%。1
地理植物是由聚乙烯,聚酯和聚丙烯等聚合物制成的地质材料。它们通常在土木工程应用中使用,以提供土壤拉伸的加固。地理植物用于建造基础,挡土墙,路边和陡峭的斜坡。它们由柔性网稳定在固定壁后面的土壤以产生增强的相干质量。结构由两对肋骨组成,这些肋骨在两个不同的方向上交叉。一组肋骨平行于机器的方向,而第二组(称为跨机动方向)垂直于机器的方向。取决于纵向和对角线肋骨的排列方式,孔(肋骨之间的空间)的范围从150到250毫米。肋骨具有通常大于肋骨并通过粘结,交织或挤出连接的孔或孔(Yousif等,2021)。