替诺福韦毒素富马酸(TDF)是人类免疫缺陷病毒管理中强烈推荐的抗逆转录病毒药物。研究表明,与TDF给药相关的神经系统和代谢性疾病,但TDF-Silver纳米颗粒结合(TDF-AGNPS)对疾病的影响尚未完全阐明。因此,本研究评估了TDF-AGNP对糖尿病大鼠前额叶皮层(PFC)的超微结构和细胞结构特性的神经保护作用。将四十二个成年男性Sprague-Dawley大鼠(250±13 g)随机分为非糖尿病基团(1-3)和糖尿病组(4-6),每例施用disted disted tilled水(0.5 ml/100g,P.O),TDF(TDF),TDF(26.8 mg/kg/kg/kg/kg/kg/bw,p.o)或kg/i。在给药八周后,评估了认知功能,氧化损伤和组织炎症。此外,使用透射电子显微镜,NISSL染色和免疫组织化学观察到PFC超微结构。糖尿病大鼠施用的TDF表现出认知缺陷;并增加血糖,丙二醛和白介素-1β(IL-1β)水平,这些水平与谷胱甘肽水平的降低以及超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性相关。此外,观察到PFC星形胶质细胞和神经元细胞器的丧失。相反,糖尿病大鼠的TDF-AGNPS施用改善了认知缺陷;并增加了谷胱甘肽,SOD和CAT,但降低了PFC丙二醛和IL-1β浓度。值得注意的是,TDF-AGNPS阻止了PFC神经元和星形细胞细胞的丧失以及神经元细胞器的形态像差。这项研究表明,TDF-Agnps通过银纳米颗粒的抗氧化剂和抗炎特性减弱了认知缺陷,从而阻止了PFC星形胶质细胞和神经元的丧失。TDF-AGNP可以用于改善由TDF延长给药引起的神经功能障碍。
勒索软件小组利用许多不同的技术,战术和有效载荷来实现其目标,但其攻击序列基本相同。1)通常,攻击者将首先执行侦察以发现企业攻击表面中的弱入口点。通常,这包括扫描其广泛的Internet连接设备,应用程序,诸如VPN和Finalls之类的安全工具(已成为主要攻击向量)以及其他可路由的基础架构和网络资源。2)接下来,攻击者将努力妥协设备,通常是通过部署恶意有效载荷或通过社交工程来损害用户凭据。3)这形成了一个海滩头,网络犯罪分子然后从中扫描网络环境以发现其他可剥削的资源,使用它们横向移动,升级特权,发现和利用皇冠上的珠宝应用程序 - 具有敏感和商业临界数据的人。4)最后,攻击者窃取和加密数据,勒索了付款的业务。
细胞间粘附分子-1 (ICAM-1) 被认为是神经炎症反应的启动子,可导致神经退行性以及认知和感觉运动障碍,出现在包括创伤性脑损伤 (TBI) 在内的几种病理生理条件下。然而,ICAM-1 介导的白细胞粘附和迁移的潜在机制及其与 TBI 后神经炎症和功能障碍的联系仍然不清楚。在这里,我们假设阻断 ICAM-1 会减弱白细胞向大脑的迁移并促进 TBI 后的功能恢复。实验性 TBI 是在雄性和雌性野生型和 ICAM-1 − / − 小鼠中通过液体冲击伤 (25 psi) 体内诱发的,并在人脑微血管内皮细胞 (hBMVEC) 中通过拉伸伤 (3 psi) 体外诱发的。我们用 ICAM-1 CRISPR/Cas9 处理 hBMVEC 和动物,并进行了几项生化分析,并证明 CRISPR/Cas9 介导的 ICAM-1 缺失可通过减弱 paxillin/黏着斑激酶 (FAK) 依赖性 Rho GTPase 通路来减轻血脑屏障 (BBB) 损伤和白细胞向脑迁移。为了分析功能结果,我们使用了一组行为测试,其中包括 TBI 后的感觉运动功能、心理压力分析以及空间记忆和学习。总之,这项研究可以确定 ICAM-1 的缺失或阻断在转变为针对 TBI 病理生理学的新型预防方法方面的重要性。
此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.15.633097 doi:bioRxiv preprint
设计的CD47保护T细胞可增强抗肿瘤免疫力Sean A. Yamada-Hunter#1,Johanna Theruvath#1,Brianna J. McIntosh 2,Katherine A. Freitas 1,3,Molly T. Radosevich 1,Amaerury Leruste 1,Amaury Leruste 1,Shaaurya dhingra 1,Shaiara dhingra 1,naiara Martinez-peneri naira Martinez-penge x,Penke x,Penge x,Penge x,Penge x, Moksha H. Desai 1,Zinaida Good 1,5,6,Louai Labanieh 1,5,7,Christopher W. Mount 8,9,10,Yiyun Chen 1,Sabine Heitzeneder 1,Kristopher D. Marjon 11,12 Y. Spiegel 13,Sebastian Fernandez- Pol 14,Poul H. Sorensen 4,Michelle Monje 8,9,10,15,Robbie G.Majzner 12,15,Irving L. Weissman 11,12,14,16 1,2,3,5,12,15,16,18,19 1癌细胞疗法中心,斯坦福癌症研究所,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。2癌症生物学计划,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 3美国加利福尼亚州斯坦福大学斯坦福大学医学院的免疫学研究生课程。 4不列颠哥伦比亚癌症局,加拿大不列颠哥伦比亚省温哥华5号帕克癌症免疫疗法研究所,美国加利福尼亚州旧金山。 6美国加利福尼亚州斯坦福大学斯坦福大学医学院生物医学数据科学系。 7,美国加利福尼亚州斯坦福大学斯坦福大学生物工程系。 8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。 9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。 10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。2癌症生物学计划,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。3美国加利福尼亚州斯坦福大学斯坦福大学医学院的免疫学研究生课程。4不列颠哥伦比亚癌症局,加拿大不列颠哥伦比亚省温哥华5号帕克癌症免疫疗法研究所,美国加利福尼亚州旧金山。 6美国加利福尼亚州斯坦福大学斯坦福大学医学院生物医学数据科学系。 7,美国加利福尼亚州斯坦福大学斯坦福大学生物工程系。 8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。 9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。 10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。4不列颠哥伦比亚癌症局,加拿大不列颠哥伦比亚省温哥华5号帕克癌症免疫疗法研究所,美国加利福尼亚州旧金山。6美国加利福尼亚州斯坦福大学斯坦福大学医学院生物医学数据科学系。 7,美国加利福尼亚州斯坦福大学斯坦福大学生物工程系。 8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。 9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。 10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。6美国加利福尼亚州斯坦福大学斯坦福大学医学院生物医学数据科学系。7,美国加利福尼亚州斯坦福大学斯坦福大学生物工程系。 8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。 9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。 10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。7,美国加利福尼亚州斯坦福大学斯坦福大学生物工程系。8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。 9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。 10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。8美国加利福尼亚州斯坦福大学斯坦福大学医学院神经病学系。9医学科学家培训计划,美国加利福尼亚州斯坦福大学斯坦福大学。10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。 19铅接触。10个神经科学计划,美国加利福尼亚州斯坦福大学斯坦福大学。19铅接触。11干细胞生物学与再生医学研究所,美国加利福尼亚州斯坦福大学。12斯坦福癌症研究所,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 13 Sylvester综合癌症中心,美国迈阿密,迈阿密,美国佛罗里达州。 14美国加利福尼亚州斯坦福大学斯坦福大学医学院病理学系。 15美国加利福尼亚州斯坦福大学斯坦福大学医学院儿科学系。 16路德维希癌症干细胞研究与医学中心,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。 18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu12斯坦福癌症研究所,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。13 Sylvester综合癌症中心,美国迈阿密,迈阿密,美国佛罗里达州。 14美国加利福尼亚州斯坦福大学斯坦福大学医学院病理学系。 15美国加利福尼亚州斯坦福大学斯坦福大学医学院儿科学系。 16路德维希癌症干细胞研究与医学中心,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。 18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu13 Sylvester综合癌症中心,美国迈阿密,迈阿密,美国佛罗里达州。14美国加利福尼亚州斯坦福大学斯坦福大学医学院病理学系。 15美国加利福尼亚州斯坦福大学斯坦福大学医学院儿科学系。 16路德维希癌症干细胞研究与医学中心,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。 18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu14美国加利福尼亚州斯坦福大学斯坦福大学医学院病理学系。15美国加利福尼亚州斯坦福大学斯坦福大学医学院儿科学系。 16路德维希癌症干细胞研究与医学中心,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。 17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。 18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu15美国加利福尼亚州斯坦福大学斯坦福大学医学院儿科学系。16路德维希癌症干细胞研究与医学中心,斯坦福大学医学院,美国加利福尼亚州斯坦福大学。17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。 18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu17美国加利福尼亚州斯坦福大学斯坦福大学化学工程系。18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。 #同等贡献**通信:cmackall@stanford.edu18美国加利福尼亚州斯坦福大学斯坦福大学医学院医学系。#同等贡献**通信:cmackall@stanford.edu
。CC-BY-NC 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
替代蛋白(AltProts)代表了一种新认识的生物活性蛋白,这些蛋白质是根据已经注释的基因中的替代开放式阅读框(ALTORF)编码的。这项研究的重点是SLC35A4基因,该基因编码参考蛋白SLC35A4和替代蛋白AltSLC35A4。结合了显微镜和生化分析,我们证实了内部线粒体膜中AltSLC35A4的存在,从而解决了先前的相互矛盾的报告。先前采用核糖体分析的研究表明,在砷钠诱导的氧化应激期间,SLC35A4的参考编码序列在所有细胞mRNA中的转化效率上的提高最大。我们的结果证实了这种翻译的上调,在氧化应激期间以上游ORF依赖性方式出现了SLC35A4蛋白同工型。值得注意的是,在氧化应激期间,AltSLC35A4的表达保持不变。敲出SLC35A4以可救出的方式增强对氧化应激的敏感性,表明对SLC35A4在应力抗性中的直接影响。总而言之,我们的研究为SLC35A4双重编码性质的功能意义提供了令人信服的证据,以抗氧化应激,并突出了在真核基因功能研究中考虑AltProts的重要性。
sirtuins(Sirt)表现出脱乙酰化或ADP-核糖基转移酶活性,并调节细胞核,线粒体和细胞质中的各种细胞过程。尚不清楚唯一驻留在细胞质中的SIRTUIN SIRT2在心力衰竭发展(HF)和心脏肥大中的作用。在本文中,我们表明删除SIRT2(SIRT2 - / - )的小鼠的心脏在缺血 - 重新灌注(I/R)和压力重载(PO)后显示出改善的心脏功能(PO),这表明SIRT2对压力的响应对心脏中的心脏不良效应发挥了不良适应性作用。在具有心肌细胞特异性SIRT2缺失的小鼠中获得了相似的结果。机械研究表明,SIRT2调节核因子的细胞水平和活性(红细胞衍生的2)类似2(NRF2),从而导致抗氧化剂蛋白的表达降低。在sirt2 - / - 鼠标心脏中删除NRF2,在PO之后逆转了保护。最后,用特定的SIRT2抑制剂对小鼠心脏进行处理可减少心脏大小,并减轻对PO的心脏肥大。这些数据表明SIRT2在心脏中具有有害作用,并且在HF和心脏肥大的进展中起作用,这使该蛋白成为SIRT家族的独特成员。此外,我们的研究还通过以药理学为目标,为心脏肥大的治疗提供了一种新颖的方法,为治疗这种疾病提供了一种新颖的途径。
- 妇科癌症妇科肿瘤学家 - 子宫阴道镜诊断专家 - 高丽大学安岩医院妇产科副教授 - 大韩妇产科学会正式会员 - 大韩女性癌症学会正式会员 - 大韩妇产科内镜学会正式会员 - 大韩癌症学会正式会员 - 大韩肿瘤癌症学会培训会员 - 大韩妇女癌症学会预防委员会 - 大韩妇产科学会学术会员 - 大韩医疗激光学会常任会员