本文由UNF Digital Commons的学生奖学金免费提供给您。已被授权的数字公共授权管理员接受了潘迪恩(Pandion)的纳入潘迪恩(Pandion):《鱼鹰研究与思想杂志》。有关更多信息,请联系数字项目。©保留所有权利
在此观点中,我们设计和合成了可编程的合成细胞/原核细胞,能够响应特定的分子输入而产生精确的结果。我们利用液态相分离的凝聚液液滴(Protocells)产生高度有序的微阵列的声波。这些安装了各种多酶级联反应,它们接收,分类和处理输入生化信号以执行一系列布尔函数。显着,通过在单个和空间分离的凝聚力种群之间建立沟通渠道,进一步推进了基于原始的布尔逻辑操作。
西德尼·奥尔特曼发现一种 RNA 可以被另一种 RNA 处理,其作用类似于酶,这一发现在生物学上具有革命性意义,也使他与托马斯·切赫共同获得了 1989 年诺贝尔化学奖。这些突破性的发现支持了 RNA 在分子进化中的关键作用,在地球生命的早期阶段,带有或不带有肽的复制 RNA(和类似的化学衍生物)在原始细胞中发挥作用,这个时代被称为 RNA 世界。在这里,我们介绍了历史背景,重点介绍了奥尔特曼和他的同事的工作,以及随后其他研究人员为了解 RNase P 及其催化 RNA 亚基的生物学功能并将其用作下调基因表达的工具所做的努力。我们主要讨论与细菌 RNase P 相关的研究,但也承认许多团体对我们了解古细菌和真核生物 RNase P 做出了重大贡献,正如本期特刊和其他地方所综述的那样。
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]