Faculty Achievements 1 BOE/BOS 1 Faculty As Resource Person 1 Reviewer for Journal / Conference 1 Best Practices 1 Parent Teacher Meeting (PTM) 1 Industrial Visits 3 Students Achievement 3 Workshop conducted/ organized 3 Alumni Interaction 4 Research Publication 5 International Journals 5 International Conferences 5 Book Chapters 5 Research Activities 6 List of Ph.D.研究学者6博士研究学者活动6研究活动统计7 FDP/研讨会参加了7个二头肌活动8高等教育促进11 Proctoring System and Counseling Report Report报告11女性细胞acivities 12 NSS活动12其他活动14运动活动14 Sports Activit
摘要表观遗传调控协调哺乳动物转录,但它们之间的功能联系仍然难以捉摸。为了解决这个问题,我们使用来自 13 种 ENCODE 细胞类型的表观基因组和转录组数据来训练机器学习模型,以预测组蛋白翻译后修饰 (PTM) 的基因表达,对于大多数细胞类型,实现了 ∼0.70 −0.79 的转录组范围相关性。我们的模型重现了组蛋白 PTM 和表达模式之间的已知关联,包括预测转录起始位点 (TSS) 附近的组蛋白亚基 H3 赖氨酸残基 27 (H3K27ac) 的乙酰化会显著提高表达水平。为了通过实验验证这一预测,并研究 H3K27ac 的天然沉积与人工沉积对表达的影响,我们将合成的 dCas9-p300 组蛋白乙酰转移酶系统应用于 HEK293T 细胞系中的 8 个基因和 K562 细胞系中的 5 个基因。此外,为了便于建立模型,我们执行 MNase-seq 来绘制 HEK293T 中全基因组核小体占有水平。我们观察到,我们的模型在准确排序基因对 dCas9-p300 系统的相对倍数变化方面表现良好;然而,与根据其天然表观遗传特征预测跨细胞类型的表达相比,它们对单个基因内倍数变化进行排序的能力明显减弱。我们的研究结果强调,我们需要更全面的基因组规模表观基因组编辑数据集,更好地理解表观基因组编辑工具所做的实际修改,以及改进因果模型,以便更好地从内源性细胞测量转移到扰动实验。这些改进将共同促进理解和可预测地控制动态人类表观基因组的能力,以及对人类健康的影响。
迫切需要为胰腺导管腺癌 (PDAC) 患者开发新的治疗策略。然而,尽管在 PDAC 的组织病理学和分子亚型方面做出了各种努力,但尚未建立新的靶向或特异性疗法。具有泛素样蛋白的翻译后修饰 (PTM),包括小泛素样修饰物 (SUMO),介导许多有助于癌细胞适应性和存活的过程。SUMO 化对转录控制、DNA 修复途径、有丝分裂进展和致癌信号传导的贡献已被描述。本文我们回顾了 PDAC 中 SUMO 通路的功能,特别关注其与以高 MYC 活性为特征的侵袭性疾病亚型的联系,并讨论了正在开发的用于精准 PDAC 疗法的 SUMO 化抑制剂。
o-glcnacylation是对蛋白质的翻译后修饰,涉及将O-GlCNAC添加到核或细胞质蛋白的丝氨酸或苏氨酸残基中,由O-GLCNAC转移酶(OGT)催化。这种修改是高度动态的,可以通过O-Glcnacase(OGA)逆转。o-glcnacylation在免疫系统中普遍存在,该系统从事多种生理和病理生理过程。有大量证据表明,己糖胺生物合成途径(HBP)和O-Glcnacylation都与调节免疫细胞功能有关。然而,O- Glcnacylation在免疫系统中的确切作用需要充分阐明。本综述提供了有关蛋白质o-胶囊化研究的目前研究的详细介绍,突显了通过该PTM控制免疫细胞生长,成熟和性能的分子机制。
PD-1/PD-L1/PD-L2 免疫检查点在调节免疫反应中起着关键作用,其功能障碍与癌细胞的免疫逃避有关。冷大气等离子体 (CAP) 已成为一种有前途的癌症治疗方式,具有调节免疫检查点的潜力。本研究采用分子动力学 (MD) 模拟来研究 CAP 诱导的氧化对 PD-1 与其配体 PD-L1 和 PD-L2 之间相互作用的影响。我们模拟了不同氧化水平下的 PD-1/PD-L1 和 PD-1/PD-L2 复合物。使用 Vienna PTM 2.0 在线服务器修改配体相互作用位点内的关键残基。伞状采样和其他 MD 分析表明,增加氧化水平会导致 PD-1 与 PD-L1 和 PD-L2 之间的结合亲和力减弱。这些发现表明 CAP 可能为增强抗肿瘤免疫提供一种新策略。这项计算研究为 CAP 影响免疫调节的分子机制提供了宝贵的见解,并强调了其在癌症免疫治疗中的潜力。
摘要 — 在本文中,我们提出了一种基于碳纳米管 (CNT) 场效应晶体管 (CNFET) 的静态随机存取存储器 (SRAM) 设计,该设计在 5 纳米技术节点上基于性能、稳定性和功率效率之间的权衡进行了优化。除了尺寸优化之外,还评估和优化了包括 CNT 密度、CNT 直径和 CNFET 平带电压在内的物理模型参数,以提高 CNFET SRAM 性能。基于亚利桑那州立大学 [ASAP 7 纳米 FinFET 预测技术模型 (PTM)] 库,将优化的 CNFET SRAM 与最先进的 7 纳米 FinFET SRAM 单元进行了比较。我们发现,与 FinFET SRAM 单元相比,所提出的 CNFET SRAM 单元的读取、写入 EDP 和静态功率分别提高了 67.6%、71.5% 和 43.6%,稳定性略好。 CNFET SRAM 单元内部和之间的 CNT 互连被视为构成全碳基 SRAM (ACS) 阵列,本文第二部分将对此进行讨论。本文实施了一个具有铜互连的 7 纳米 FinFET SRAM 单元并将其用于比较。
摘要 本文的目的是使用逻辑门和 CMOS 逻辑设计一个 16:1 多路复用器。在本研究中,我们研究了 16:1MUX 的延迟和功率调制。这表明 CMOS 技术处于领先地位,因为它使用的晶体管数量更少、电容更少、速度更快。在本研究中,我们进行了比较工作并得到了模拟结果,结果说明了 CMOS 逻辑设计的优越性,并且功耗和延迟非常低。使用 Synopsys 工具 HSPICE 在 32 nm BSIM 4 模型卡下对 PTM 模型的块状 CMOS 技术进行了模拟,并检查了不同电压下的结果。最小和最大延迟和功耗结果分别为 68.82ps、92.16ps 和 103.96µW、1471.4µW。我们在多路复用器中获得的总晶体管数量为 282,这是模拟的,我们使用名为 HSPICE 的高级工具获得了 MUX 的输出波形,它们在结果部分中表示出来。关键词:多路复用器、2×1 多路复用器、4×1 多路复用器、8×1 多路复用器、16×1 多路复用器、延迟、功耗
人群计数在现实世界中找到直接应用程序,从而使计算效率和性能至关重要。但是,以前的大多数方法都依赖于限制部署的重型主链和复杂的下游体系结构。为了应对这一挑战并实现了人群计数模型的多功能性,我们介绍了两个轻量级模型。这些模型在合并两个不同的骨架的同时保持了相同的下游体系结构:Mobilenet和MobileVit。我们利用辅助融合来从预训练模型(PTM)中提取不同的比例功能,然后随后将这些特征无缝地结合在一起。这种方法赋予我们的模型能够提高性能,同时保持紧凑,高效的设计。通过将我们提出的模型与先前可用的先前最先进的方法(SOTA)方法进行比较,在上海-A-A Shanghaitech-B和UCF-CC-50数据集上,它取得了可比的结果,同时是计算上最有效的模型。最后,我们提出了一项比较研究,这是一项广泛的消融研究,并修剪以显示模型的有效性。
CUTANA™ChIC/CUT&RUN 试剂盒可简化组蛋白翻译后修饰 (PTM) 和染色质相关蛋白的染色质分析。CUT&RUN 试剂盒版本 5 (v5) 现在包含额外的对照抗体 (H3K27me3)。阳性 (H3K4me3 和 H3K27me3) 和阴性 (IgG) 对照抗体与 SNAP-CUTANA™spike-in 对照配对,用于优化测定和持续测定监测 (图 2)。包含大肠杆菌 DNA 以进行数据标准化。SPRI 磁珠用于 DNA 纯化,可在整个工作流程中实现无缝多通道移液,从而最大限度地提高通量和可重复性。该试剂盒与各种输入兼容,包括源自天然、冷冻保存或交联样本的细胞或细胞核。虽然建议从 500,000 个细胞开始,但只需 5,000 个细胞即可生成可比数据。纳入对照以及与多种目标类型、样本输入和低细胞数量的兼容性,使该试剂盒成为染色质映射实验的首选解决方案。