摘要:使用离子动力增强的LC-MS提供无标记定量的热蛋白质组分析,提供了多功能数据集,提供有关蛋白质差异表达,热稳定性和转录因子活性的信息。我们开发了一种多维数据分析工作流程,用于无标记的定量热蛋白质组分析(TPP)实验,该实验结合了基因集富集分析的各个方面,差异蛋白蛋白表达分析以及从LC- MS数据中推断转录因子活性的推断。我们将其应用于黑色素质素3受体(MC3R)激活的信号传导过程,这些激动剂源自促蛋白酶素皮质素激素:ACTH,α -MSH和γ -MSH。获得的信息用于绘制MC3R下游的信号通路,并推断出负责配体治疗的细胞反应的转录因子。使用我们的工作流程,我们确定了差异表达的蛋白质并研究了它们的热稳定性。我们在总共298个蛋白质中发现了由MC3R激活导致的热稳定性改变的蛋白质。在这些中,几种蛋白质是转录因子,表明它们是参与MC3R信号级联的下游目标调节剂。我们发现转录因子CCAR2,DDX21,HMGB2,SRSF7和TET2的热稳定性改变了。MC3R信号级联中的这些明显的目标转录因子在免疫反应中起着重要作用。此外,我们推断了数据集中确定的转录因子的活动。这种综合方法生成复杂这是使用贝叶斯统计数据使用我们使用无标签定量LC-MS获得的差异表达数据完成的。通过我们观察到的磷酸化肽丰度,在我们的生物学管道中验证了推断的转录因子活性,这突出了转录因子调节中翻译后修饰的重要性。我们的多维数据分析工作流程允许对MC3R激活下游的信号过程进行全面表征。它提供了有关蛋白质差异表达,热稳定性和关键转录因子活性的见解。本研究中生成的所有蛋白质组学数据均可在DOI上公开获取:10.6019/pxd039945。■引入蛋白质 - 配体相互作用在几乎所有生物过程中都起着至关重要的作用,这使得他们的研究对于不足的细胞功能和发展疗法至关重要。已经开发了许多方法来表征这些相互作用,通常集中于配体亲和力。然而,随访蛋白 - 配体相互作用与其下游效应(包括跨文字组,蛋白质组学和翻译后修饰(PTM)变化)非常重要。热蛋白质组分析(TPP)已成为一种有价值的技术,可以深入了解蛋白质功能,蛋白质 - 蛋白质相互作用,甚至预测与生理相关环境中的不良药物影响。1,2 TPP基于蛋白质 - 配体相互作用的内在特性,例如,当配体结合稳定蛋白质结构并因此增加了其熔化温度时。1,2详细使用,TPP采用了多步方法,包括配体处理,加热,提取,纯化,消化和LC -MS分析。
蛋白质会经历无数种化学修饰,这些修饰会调节其结构、稳定性、功能和与其他分子的相互作用,从而为生物系统增加巨大的复杂性和调节范围。此类翻译后修饰 (PTM) 可由细胞刺激或应激引发,并启动下游反应,使细胞适应其环境并介导增殖、分化和死亡等变化。瓜氨酸可以存在于蛋白质中,这是精氨酸残基的翻译后修饰的结果,称为肽精氨酸脱亚胺化或瓜氨酸化。由于瓜氨酸是一种非编码氨基酸,因此它在蛋白质中的存在表示刺激和反应。尽管瓜氨酸化早在 20 世纪 60 年代就被首次证实 [1],第一种瓜氨酸化酶肽酰精氨酸脱亚胺酶 (PADI 或 PAD) 也在 20 世纪 80 年代初被分离出来 [2],但仍有越来越多的细胞活动和病理被证明受到瓜氨酸化的影响,并且在过去 15 - 20 年间取得了长足的进步。现在人们了解到,由五种 PADI 酶组成的小家族具有多种生理和病理生理功能(详见 [3]),但是,我们仍然缺乏对细胞内 PADI 调控机制原理以及它们发挥细胞和生物体功能的机制的基本了解。我们对瓜氨酸化的理解源自许多不同的领域,包括神经生物学、免疫学、生殖生物学、皮肤生理学、细胞信号传导、染色质生物学和转录,以及自身免疫、神经退行性疾病和癌症。尽管 PADI 的调节范围显然很广,但这些酶表现出高度的序列和结构保守性,这表明某些机制原理可能适用于不同同工酶的调节。此外,分析方法学的最新进展,例如靶向质谱和调节 PADI 功能的化学生物学努力,可能适用于许多不同的生物系统。因此,显然需要一个论坛,让来自瓜氨酸化研究不同方面的科学家聚集在一起,讨论他们的工作并交流想法,以促进该领域的进步。因此,第一届蛋白质瓜氨酸化国际会议于 2022 年 10 月在英国举行,得到了皇家学会的慷慨支持(https://royalsociety.org/science-events-and-lectures/2022/10/protein-citrullination/)。本次讨论会聚集了细胞和发育生物学、细胞信号传导、基因转录、癌症生物学和自身免疫领域的科学家,同时还结合了质谱和药理学领域的顶尖专家的重要演讲。本期专题紧随此次会议,报道了与会者的最新研究成果,包括九篇研究论文和六篇评论文章,涵盖了广泛的主题。在本简介中,我们总结了本期所介绍的进展,其中包括对已建立的 PADI 功能的新机制理解和瓜氨酸化生物学中出现的新主题。