((Aged[Mesh] 或 Aging[Mesh] 或 Aged[Text Word] 或 aging[Text Word] 或 Elder*[Text Word] 或 “old adult*”[Text Word] 或 “older adult*”[Text Word] 或 “old person*”[Text Word] 或 “older person*”[Text Word] 或 “old individual*”[Text Word] 或 “older individual*”[Text Word] 或 “old people”[Text Word] 或 geriatr*[Text Word] 或 “independent living”[Mesh Terms] 或 “independent living”[Text Word] 或 “healthy aging”[Mesh] 或 “healthy aging”[Text Word] 或 healthy[Text Word]) AND (Exercise[Mesh] 或 Exercise[Text Word] 或 “physical activity”[Text Word] 或 “physical exertion”[MeSH] 或 “physical exertion”[Text Word] 或 “physical fitness”[Mesh] 或 “Physical Education and Training”[Mesh] 或“体育教育与训练”[Text Word] 或 “体育教育”[Text Word] 或 “体育训练”[Text Word] 或 “体能训练”[Text Word] 或 “体能训练”[Mesh] 或 “体能训练”[Text Word]) AND (mhealth[Text Word] 或 “m-health”[Text Word] 或 “移动健康”[Text Word] 或 “可穿戴技术*”[Text Word] 或 “智能手机*”[Text Word] 或 “移动应用*”[Text Word] 或 应用*[Text Word] 或 webapp*[Text Word] 或 ehealth[Text Word] 或 “电子健康”[Text Word] 或 远程医疗[Text Word]))
S.,Vaes B.,G.,Torzsa P.,Ticmane G.,Sainter T.,Servant A.,Stafle M.,Petrics G.,Petet D. M.,Mossong J.,Kozlovska L.,SegernäsA。,Krzto-Christian A. L.,Shushman I.,Ilkov O.,Hoffmann K.,Heleno B.,HanževačkiM.,Goldagski D. Bakola M.,Adler L.,Assenova R.,S.S.,Astier-PeñaMP。 EUR J Gen练习。 2024 dec; 30:2409240。 doi: EPUB 2024 10月22日。 pmid:39435869S.,Vaes B.,G.,Torzsa P.,Ticmane G.,Sainter T.,Servant A.,Stafle M.,Petrics G.,Petet D. M.,Mossong J.,Kozlovska L.,SegernäsA。,Krzto-Christian A. L.,Shushman I.,Ilkov O.,Hoffmann K.,Heleno B.,HanževačkiM.,Goldagski D. Bakola M.,Adler L.,Assenova R.,S.S.,Astier-PeñaMP。EUR J Gen练习。2024 dec; 30:2409240。 doi:EPUB 2024 10月22日。pmid:39435869
利用人工智能减轻青少年危险行为:范围界定审查方案 Hamidreza Sadeghsalehi a 和 Hassan Joulaei a,* a 伊朗设拉子医科大学健康研究所卫生政策研究中心 * 通讯作者(joulaei_h@yahoo.com) 青少年特别容易从事暴力、无保护性行为和药物滥用等危险行为,这些行为会对他们的健康和发展产生重大的负面影响。人工智能 (AI) 的最新进展为解决这些行为提供了创新的解决方案,但关于基于 AI 的干预措施的有效性和实施的证据仍然零散。本范围界定审查旨在系统地探索和绘制旨在减少青少年危险行为的基于 AI 的干预措施的文献。本综述将遵循 Arksey 和 O'Malley (2005) 概述并由 Levac、Colquhoun 和 O'Brien (2010) 改进的方法框架,符合 Joanna Briggs 研究所的指导方针。PRISMA 范围界定综述扩展 (PRISMA-ScR) 将指导报告。搜索策略将在 PubMed、Scopus、Web of Science 核心合集、CINAHL、PsycINFO、Cochrane 对照试验中心注册库、Embase、SID 和 Magiran 中执行,重点关注截至 2024 年 6 月以英语和波斯语发表的文章。两名独立审阅者将使用 Rayyan 筛选标题和摘要,然后对相关研究进行全文筛选。数据将使用标准化表格绘制图表,差异将通过讨论或咨询第三位审阅者解决。数据将以描述性方式综合并以表格、图形和图表的形式呈现。关键词:青少年、人工智能、危险行为、范围审查、干预措施
1个教学科学博士学位,学龄前和初等教育主席的高级讲师,Sumy State教学大学以A. S. S. Makarenko的名字命名:小学教育方法,oleksandr dovzhenko hlukhiv国家教学大学,reshetnyakvf@gmail.com 3教学科学博士学位,副教授,学前教育和初等教育副教授,Sumy State Cate Catemy Cate of Sumy State Catepogical University,以A. S. S. Makarenko Id: https://orcid.org/0000-0001-5241-0958,vasko.olga@gmail.com 4教育学科学候选人,教育学,心理学,初级教育和教育管理部讲师https://orcid.org/0000-0001-6943-1819,alinka.drokina@ukr.net 5 ph.d. in Physical and Mathematical Sciences, Associated Professor of the Department of Mathematics and Informatics and Methods of Teaching, Vasyl Stefanyk Precarpathian National University, ORCID ID: https://orcid.org/0000- 0002-8419-3211 , yuriy.klanichka@gmail.com 6 Doctor of Philosophy (PhD), Associate Professor of the Department of Primary Education,人文学科和信息学,区域学院“ Kremenchuk人道主义和技术学院以Poltava区域理事会的A.S. Makarenko命名,Orcid ID:https://orcid.org/0000-0000-0000-0000-9935-9935-3433
摘要:铁 (Fe) 螯合药物和组蛋白去乙酰化酶 (HDAC) 抑制剂是治疗遗传性弗里德赖希共济失调的两种选择,已被证明可以改善临床结果 (FA)。Fe 螯合分子可以最大限度地减少储存的 Fe 量,而 HDAC 抑制剂可以促进 Frataxin (FXN) 基因的表达,从而增强 FA。本文报告了从 ChEMBL 数据库中对抑制剂进行完整的定量构效关系 (QSAR) 搜索,其中包括 437 种 Fe 螯合化合物和 1,354 种 HDAC 抑制剂化合物。为了进一步研究,选择 IC50 作为生物活性单位,经过数据细化,最终生成了 436 种 Fe 螯合化合物和 1,163 种 HDAC 抑制化合物的数据集。使用随机森林 (RF) 技术生成模型(训练 R 2 得分分别为 0.701 和 0.892;测试 R 2 得分分别为 0.572 和 0.460,分别针对 Fe 和 HDAC)。使用 PubChem 指纹创建的模型是 12 种指纹类型中最强的;因此选择该特征进行解释。结果显示了与含氮官能团(PubchemFP656 的 SHAP 值为 -0.29)和芳香环(PubchemFP12 的 SHAP 值为 -0.16)相关的特性的重要性。因此,我们解释了分子指纹对模型的影响以及对可用于人工智能 FA (XAI) 的潜在药物的影响,这可以通过 SHAP(Shapley 加法解释)值来解释。模型脚本和指纹识别方法也可在 https://github.com/tissueandcells/XAI 获得。关键词:可解释人工智能、弗里德赖希共济失调、预测准确性、定量构效关系、QSAR、Shapley 值。
1 乌克兰国立生命与环境科学大学,基辅,乌克兰,mira-i@ukr.net 2 乌克兰国立美术与建筑学院,基辅,乌克兰,tetiana.tsoi@naoma.edu.ua,ORCID ID:https://orcid.org/0000-0003-4413-1478 3 瓦西里·斯特凡尼克喀尔巴阡国立大学,伊万诺-弗兰科夫斯克,乌克兰,ihor.hoian@pnu.edu.ua,ORCID ID:https://orcid.org/0000-0003-2548-0488 4 瓦西里·斯特凡尼克喀尔巴阡国立大学,伊万诺-弗兰科夫斯克,乌克兰,maksimdoichyk@ukr.net,ORCID ID:https://orcid.org/0000-0001-5081-1386 5 马卡罗夫海军上将国立大学造船大学,乌克兰尼古拉耶夫,oksana.patlaichuk@nuos.edu.ua,ORCID ID:https://orcid.org/0000-0002-1448-3360 6 海军上将马卡洛夫国立造船大学,乌克兰尼古拉耶夫,olga.stupak@nuos.edu.ua,ORCID ID:https://orcid.org/0000-0001-7846-1489
多年来,抑制导致癌症的蛋白激酶 (PK) 一直是癌症治疗的重要课题。到目前为止,FDA 批准的药物已经针对了 530 多种 PK 中的近 8%,大约 150 种蛋白激酶抑制剂 (PKI) 已经在临床试验中进行了测试。我们提出了一种基于自然语言处理和机器学习的方法来研究 PK 和癌症之间的关系,预测抑制哪些 PK 可以有效治疗某种癌症。我们的方法根据 PubMed 摘要中的单词和概念邻域将 PK 和癌症表示为具有语义意义的 100 维向量。我们使用 ClinicalTrials.gov 中有关 I-IV 期试验的信息来构建随机森林分类的训练集。我们使用历史数据的结果显示,可以提前数年准确预测 PK 与特定癌症之间的关联。我们的工具可用于预测抑制 PK 对特定癌症的相关性,并支持设计有针对性的临床试验,以发现用于癌症治疗的新型 PKI。
在看不见的文章上的出色表现表明,BERT模型的预测能够概括。使用BERT模型的多数投票,其中94.8%(2,019,050)的文章被识别为含有药物或蛋白质实体的药物目标(阳性)。在〜2.1m的正面预测文件中,21.9%(467,638)在Pubtator中包含药物和蛋白质实体。结果可能是低估的,因为药物或蛋白质实体(或两者都)可能被沉积为补充数据,而PubTator的后端算法未捕获。这意味着,即使文章被积极预测,在某些情况下,我们的工作流程可能不会捕获药物或蛋白质,因此手动策展人的任务使手动策展人检查了补充材料。的确,许多
摘要背景:药物-靶标相互作用 (DTI) 对于药物重新利用和阐明药物机制至关重要,它们收集在大型数据库中,例如 ChEMBL、BindingDB、DrugBank 和 DrugTargetCommons。然而,提供这些数据的研究数量(约 0.1 百万)可能仅占 PubMed 上包含实验性 DTI 数据的所有研究的一小部分。查找此类研究并提取实验信息是一项艰巨的任务,迫切需要机器学习来提取和管理 DTI。为此,我们开发了基于 Transformers 的双向编码器表示 (BERT) 算法的新型文本挖掘文档分类器。由于 DTI 数据与用于生成它的检测类型密切相关,因此我们还旨在合并函数来预测检测格式。结果:我们的新方法从以前未包含在公共 DTI 数据库中的 210 万项研究中识别和提取了 DTI。使用 10 倍交叉验证,我们获得了约 99% 的识别包含药物-靶标对的研究的准确率。检测格式预测的准确率约为 90%,这为未来的研究留下了改进的空间。结论:本研究中的 BERT 模型是稳健的,所提出的流程可用于识别包含 DTI 的新研究和以前被忽视的研究,并自动提取 DTI 数据点。表格输出有助于验证提取的数据和检测格式信息。总体而言,我们的方法在机器辅助 DTI 提取和管理方面取得了重大进步。我们希望它成为药物机制发现和再利用的有用补充。关键词:BERT、来自 Transformer 的双向编码器表示、用于生物医学数据的 BERT、药物靶标相互作用预测、挖掘药物靶标相互作用、生物医学文本挖掘、生物活性数据、药物再利用