已在薄膜装置中演示了 77 K 下的 SQUID 行为。该装置相当稳定和坚固,可以作为功能性仪器的基础。这将需要结合超导通量变压器,这需要多层薄膜,目前超出了我们的能力。可以在基本 SQUID 图案上进行有用且简单的开发工作,以改善聚焦效果,并优化各向异性双晶技术中可用的参数。
每个电池在冰中冷却至少 1 小时;然后用丙酮冲洗后,用压缩空气小心地将其温度计套管吹干。接下来,将粉碎的固体二氧化碳倒入套管中,直到与水的水平相似;不断加满,直到冰套看起来大约 6 到 8 毫米厚。从这个阶段开始,不再添加任何 CO2,让电池中的 CO2 升华,直到冰盖的厚度相当均匀。然后将任何剩余的 CO2 倒出,并用冰水填充套管。然后将电池重新装在冰中,放置约 20 小时,然后通过将金属棒插入套管几秒钟来融化冰套和温度计套管之间的界面,以备使用。在开始任何测量之前,通过确保套管可以自由旋转来检查套管的自由度。
自2021年的竞争性前景以来,波斯尼亚和黑塞哥维那在15个政策维度中有11个进步,显示出贸易和农业政策领域的得分最高。然而,经济的整体绩效仍低于大多数维度的西部巴尔干(WB6)经济体的平均水平,在数字社会,农业,教育和旅游政策中,欧盟融合所需的显着增强。有关在各个方面,随着时间的推移趋势或与其他经济体进行比较的波斯尼亚和黑塞哥维那的表现的更多见解,请参阅西巴尔干的竞争性数据中心:westernbalkans-competitivilines.oecd.org。
• Paper copies of the English flyer are available to order , free of charge using product code: 2901027 • Translated versions of the flyer are available to download in the following languages: Afrikaans, Arabic, Bengali, Cantonese, Chinese, French, Italian, German, Hebrew, Hindi, Lithuanian, Polish, Portuguese, Romani, Romanian, Swahili, Spanish, Turkish,他加禄语,泰米尔语,乌克兰和乌尔都语。
1. Meitar D、Marom D、Lusk P、Kalet A。医学教育中的变革型领导力培训:拓扑学。医学教学与学习。2024;36(1):99-106。PMID:37266979 2. Farkas AH、Kibicho J、Ndakuya-Fitzgerald F、Mu Q。针对 VA 女性健康初级保健提供者的护理准备调查的开发。全科医学杂志。2024 年 5 月;39(6):1010-1014。PMID:37946022 3. Nandiwada DR、Farkas AH、Nikiforova T、Leung PB、Donovan AK、Killian K、Thomas ML、Singh MK、Gallagher B、Callender DM。探索培训中的初级保健职业接触模式:叙述性评论。 《普通内科杂志》 。2024 年 2 月;39(2):277-282。PMID:37989819 4. Vasudev K、Vasudev E、Lee C、Neumann AA、Regner A、Simpson PM、Dasgupta M、Fletcher KE。新冠疫情对高中生医疗保健职业兴趣的影响。《青少年健康杂志》 。2024 年 3 月;74(3):621-624。PMID:38069934 5. Mehta A、Yung T、Davis W、Choi J、Singh S。腹膜透析相关腹膜炎:Aquamicrobium 首例病例。肾脏病学(维多利亚州卡尔顿)。肾脏病学(卡尔顿)。2024 年 5 月;29(5):297-299。 doi: 10.1111/nep.14268。2024 年 1 月 2 日电子版。PMID:38164820 6. Khoja K、Samant S、Kumar D、Jha P。双重麻烦:COVID-19 肺炎与 COVID-19 相关肺曲霉病并发。WMJ:威斯康星州医学会官方出版物。2023 年 12 月;122(5):364-367。PMID:38180925
(38061371,“ Staplin N.,Haynes R.,法官P.K.,Wanner C.,Green J W.,Wallendszus K.,Brenner S.,Cheung A.K.,Liu Z.H.,Li J.,Hooii L.S.,Liu W Deo R.,Goto S.,Rossello X.,Tuttle K.R.,Steubl D.,Petrini M.,Seidi S.,Landray M.J.,Baigent C.,Herington W Hafidz M.I.,Abdul Wahab M.Z.,Abdulah N.K.,Abdul-Samad T.,Abe M.,Abraham N.,Acheampong S.,Achiri P.,Acosta J R.,Adnan N.,Africano A.,Agharazii M.,Aguilar F.,Auguilera A.,Ahmad M.,Ahmad M.K.,Ahmad N.A.,Ahmad N.H.,Ahmad N.I.,Ahmad N.I.,Ahmad N.I.,Ahmad Miswan N. I.,Ahmed S.,Aiello J.,Aitkeen A.,Aitsadi R.,Aker S.,Akimoto S.,Akinfolarin A.,Akram S.,Alberici F. M.,Ali A.,Alicic R.,Aliu A.,Almaraz R.,Almasarwah R.,Almeida J.,Aloisi A.,Al-Rabadi L.,Alscher D.,Alscher D.,Alvarez P.,Alvareer B.,Amat M.,Amat M.,Ambrose C.,Ambrose C.,Ammar H.,Ammar H. Ansu K.,Apostolidi A.,Arai N.,Araki H.,Araki S.,Empagliflozin对慢性肾脏疾病进展的影响:A。 Empa-Kidney试验,《柳叶刀糖尿病与内分泌学》,2024-01-01-01 00:00:00”,http://www.ncbi.nlm.nih.gov/pubmed/?term = 38061371)
版权所有 © 2024 美洲开发银行 (IDB)。本作品受 Creative Commons 许可 CC BY 3.0 IGO ( https://creativecommons.org/licenses/by/3.0/igo/legalcode ) 约束。必须满足 URL 链接中所示的条款和条件,并且必须授予 IDB 相应的认可。根据上述许可的第 8 条,任何与根据此类许可产生的争议有关的调解均应按照 WIPO 调解规则进行。任何与使用 IDB 作品有关的争议,如果不能友好解决,应根据联合国国际贸易法委员会 (UNCITRAL) 规则提交仲裁。将 IDB 名称用于除署名以外的任何目的以及使用 IDB 徽标均应受 IDB 与用户之间单独书面许可协议的约束,并且不属于本许可的一部分。请注意,URL 链接包含作为本许可不可分割的一部分的条款和条件。本文表达的观点为作者的观点,并不一定反映美洲开发银行、其董事会或他们所代表的国家的观点。
摘要 尽管已推出多种新药和联合疗法,但传统的地塞米松仍然是多发性骨髓瘤 (MM) 治疗的基石。然而,其应用受到常见不良反应的限制,其中感染率的增加可能对临床产生最大的影响。将地塞米松封装在长循环 PEG-脂质体中可以提高其在 MM 中的疗效-安全性比,从而既增强了药物向 MM 病变的输送,又减少了全身皮质类固醇的暴露。我们在一项 I 期开放标签非对比介入试验中,以两种剂量水平评估了单次静脉 (iv) 输注聚乙二醇化脂质体地塞米松磷酸盐 (Dex-PL) 对接受过大量治疗的复发或进展性有症状 MM 患者的初步安全性和可行性。在入选的 7 名患者中(由于招募速度太慢,研究不得不提前结束),发现 Dex-PL 耐受性良好,而且与传统地塞米松相比,未检测到新的或意外的不良事件。药代动力学分析表明,静脉注射后,地塞米松在血液循环中的浓度持续较高且持续超过一周,这可能是由于脂质体的长循环半衰期所致,脂质体将地塞米松保留为无活性的磷酸盐前体药物形式,这可能会显著限制全身对活性母体药物的暴露。因此,尽管这项小规模首次人体试验存在局限性,但 Dex-PL 似乎是安全且耐受性良好的,没有严重的副作用。需要进行后续研究以在更大的患者群体中证实这一点,并评估静脉注射 Dex-PL 是否可以为 MM 提供更安全、更有效的地塞米松治疗选择。
KJ Subhashini夫人Sruthi Raj Kamal夫人,Arnl Sireesha夫人,Y Rajani夫人,Y Rajani夫人 - 散装和药物剂型的Ketorolac Tromethamine的开发和验证,并使用UV分光光度计使用UV分光光度计,国际研究教育教育和科学方法(ISSIFICATIC MADICTS) 2023,www.ijaresm.com,doi:https://doi.org/10.56025/ijaresm.2023.114231436,volume:11,issue:4 Page no:1436-1442
・东盟生物多样性中心(2023)。东盟生物多样性前景3。从https://abo3.aseanbiodiverity.org/・Baloloy A.B.检索等。(2023)。绘制菲律宾的多年红树林变化:植被范围以及与人类和气候相关因素的影响。in:Leal Filho,W.,Kovaleva,M.,Alves,F.,Abubakar,I.R。(eds)气候变化策略:处理适应不断变化的气候的挑战。气候变化管理。Springer,Cham。 https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。Springer,Cham。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。(2023)。不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。in icimod(P. Wester等人[eds。]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。123–163)。icimod。https://doi.org/10.53055/icimod.103 ・Corcino R.等。(2023)。菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。海洋科学区域研究(2024)。一个监测保护区和其他基于区域的保护措施的生物多样性的框架。IUCN WCPA技术报告系列7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。(2023)。(2023)。Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。全球生物多样性观察系统,以团结监测和指导行动,《自然生态与进化》第7期,第2173页。https://doi.org/10.1038/s41559-023-023-02263-x,环境科学领域,11。https://doi.org/10.3389/fenvs.2023.1281536 ・Hughes A.C.(2023)。帖子 - 2020年全球生物多样性框架:我们是如何到达这里的,下一个我们要去哪里?综合保护2(1)1-9。 https://doi.org/10.1002/inc3.16 ・ icimod(2023)。印度教库什·喜马拉雅山的水,冰,社会和生态系统:看法。(P. Wester,S。Chaudhary,N。Chettri,M。Jackson,A。Maharjan,S。Nepal&J.F。Steiner [eds。]。icimod。https://doi.org/1053055/icimod.1028 ・Kass J.等。 (2023)。 生物多样性建模的进步将改善对大自然对人的贡献的预测。 生态与进化的趋势。 https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/1053055/icimod.1028 ・Kass J.等。(2023)。生物多样性建模的进步将改善对大自然对人的贡献的预测。生态与进化的趋势。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。(2023)。生态系统的红色列表,西方珊瑚三角的红树林。ecoevorxiv。https://doi.org/10.32942/x21k5p ・Mori A.S.等。(2023)。可持续性挑战,机会和解决方案,用于长期生态系统观察。皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。(2023)。审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。等。(2024)。(2023)。生态与环境杂志(印刷中)・蓬普特A.J.靶向站点保护以提高新的全球生物多样性目标的有效性,一个地球,7(1):11-17。 https://doi.org/10.1016/j.oneear.2023.12.007。salmo,S。G.等。联合国在生态系统恢复的十年中的东南亚红树林。海洋科学领域。https://doi.org/10.3389/fmars.2023.1341796 ・Shin N.等。(2023)。在1807 - 1838年的Kakuson日记中,来自日本Kanazawa的采矿植物物候记录。国际生物气象学杂志。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。 (2024)。 观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解? 正面。 环境。 SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。(2024)。观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解?正面。环境。SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。SCI。12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。(2024)。在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。正面。维持。旅行。3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。12。在线。https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://www.biodiverity-science.net/cn/article/shownewarticle.do。▶生活世界特刊,2023年。08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。・ Trisurat Y.等。(2023)。(2023)。气候变化对泰国的物种组成和植物区域的影响。多样性15,1087。https://doi.org/10.3390/d15101087 wee A.等。在东南亚红树林恢复中进行环境DNA(EDNA)的前景和挑战。海洋科学领域。https://doi.org/10.3389/fmars.2023.1033258演示材料都可以通过Apbon网站访问:http://wwwww.esabii.biodic.go.go.go.jp/ap-bon/ap-bon/index.htex.htex.htex.html