如果在化合物中也存在氮和硫,则将钠融合提取物用浓硝酸煮沸,以分解氰化钠和在Lassaigne的测试期间形成的硫化钠,否则它们会干扰卤素银测试的卤素。
该项目的主要目的是提出一种有效的方法,将石墨至少净化至至少99%。对高级石墨产品的需求不断增长,碳的需求不断增加,这导致了各种方法的开发,即使是每百万范围的零件,也可以消除杂质。从94%石墨中去除杂质对于获得高纯度石墨产物很重要。微波辐射用于从94%石墨浓缩物中制备高纯度石墨。结果表明,微波辐照可以将薄片石墨的固定碳提高到更高的水平。在选择4个Minutes的反应时间和100%微波输出(800 W)的最佳条件下,从Flake石墨浓缩物中获得了固定碳含量为98.845%的石墨产物。根据XRD,FTIR和手持XRF分析,杂质主要由Fe,Co,Sr和Zr组成,在治疗前存在。在最佳条件下处理后,样品中的主要杂质从3.566%降低到1.031%。最佳条件下石墨的灰分含量为1.55%。薄片石墨的晶体结构没有变化。可以从这项研究中得出结论,使用微波辐照的石墨净化会增加石墨的碳含量。
在这项研究中,使用反应上清液,将蒸汽爆炸用作木质素提取的主要方法。以这种方式,稻草中存在的木质素也可用于生产多元醇,这是合成一种类型的粘合剂(例如聚氨酯)的主要试剂之一,因此是稻草完全重估的稻草(Hernández-Ramos等人,2021年)。同时,我们的研究研究了木质素的纯化。木质素受到分馏的纯化技术,根据所应用条件的不同程度的纯度。这些纯化的木质素分数的特征是评估其对工业的适用性
多年来,Eco-Tec 已在全球主要市场站稳脚跟,主要产品包括工业水处理、化学回收和气体净化系统。工业水处理包括用于蒸汽和发电的高纯度水处理系统,以及用于石油和天然气生产的采出水处理系统。化学回收系统净化、回收和再循环用于炼油厂和天然气加工厂、钢铁和铝精加工、电镀和矿物加工的化学品。气体净化系统专门用于从沼气中去除硫,并推出了用于酸性气体处理和硫脱气的新产品。
稀土元素(REE),由灯笼(从灯笼到lutetium)以及Scandium and Yttrium组成,是许多可持续能量技术(例如磁铁)的重要成分,例如在硬盘,电动汽车,电动汽车和手机中 - 室温超级效率,以及高效的轻型功能[1]。当前提取和纯化这些元素的方法,利用环境有害的化学物质,并具有大量的碳足迹[2]。我们旨在利用生物学来创建一个更清洁,可持续的REE纯化过程。已经发现,细菌在其膜上包含许多位点,这些位点对REE对其他元素具有特异性,并且对其他REE的某些REE具有特异性[3,4]。我们计划将V. natriegens的基因组诱变,然后进行高通量筛选,以查找具有更改某些REE而不是其他REE的菌株。我们正在利用CNF来构建微流体液滴生成和排序设备,以进行此高通量筛选。
创新型电池材料回收商 Neometals Ltd (ASX: NMT & AIM: NMT)(简称“Neometals”或“公司”)欣然宣布,其锂化学中试(简称“中试”)的净化阶段(简称“净化测试”)已成功完成。在盐水进料源上进行的净化测试已证实了早期的台架试验,去除了 97% 以上的盐水进料源杂质。这支持生产出符合公司多数股权的 ELi™ 工艺(简称“ELi™ 技术”)后续电解阶段规格的净化盐水溶液。
在本应用注释中,我们展示了如何进一步用于净化质粒DNA和PCR产物,这是体外转录的mRNA生成工作流程的第一步。为此,我们收集了一种大型细菌培养物,该培养物包含质粒DNA,含有多功能相关的转录物靶基因lin28a,该基因在ShakerInnova®S44I中生长。转子R9A2用于细菌3 L(2 x 1.5 L)的细菌培养物。使用转子R15A的组合形成了从一个1.5 L瓶(1500pp瓶)获得的整个细菌颗粒的DNA纯化,该组合可容纳高达10 x 50 ml和10 x 15 ml,以及可容纳最多可容纳30 x 2 ml的转子R22a4。由于其高容量,这种组合允许旋转数量减少。最后,我们表明高质量的转录过程可以通过体外转录(IVT)5,6来促进mRNA。
生物柴油的生产已成为全球努力替代化石燃料的重要组成部分。然而,生物柴油生产中面临的问题之一是甘油产量增加,作为一种产物。甘油或粗甘油(CG)通常是大量生产的,需要明智地管理。本文讨论了生物柴油生产中的甘油作为生物乙醇生产的原料的潜在利用。通过优化发酵过程,基因工程技术和纯化,可以将甘油转化为生物乙醇。生物乙醇是环保的可再生燃料之一。基因工程技术的进步还支持甘油转化为生物乙醇的成功,从而可以发展更有效和生产性的微生物。这为减少浪费,支持资源的可持续性并通过使用甘油作为生物乙醇的原料来减少浪费,支持化石燃料的依赖。将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。 关键词:生物乙醇,可再生能源,可持续性,基因工程将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。关键词:生物乙醇,可再生能源,可持续性,基因工程
后门攻击将中毒的样本注入训练数据,从而导致模型部署期间中毒输入的分类错误。防御此类攻击是具有挑战性的,尤其是对于仅允许查询访问的现实世界黑框模型。在本文中,我们通过零照片图像纯化(ZIP)提出了一个针对后门攻击的新型防御框架。我们的框架可以应用于中毒的模型,而无需有关模型或任何清洁/有毒样品的任何先验知识的内部信息。我们的防御框架涉及两个步骤。首先,我们在中毒图像上应用线性转换(例如模糊)以破坏后门图案。然后,我们使用预训练的扩散模型来恢复转换删除的缺失语义信息。特别是,我们通过使用转换后的图像来指导高保真纯化的图像的生成,该图像在零拍设置中起作用。我们在具有不同类型的攻击的多个数据集上评估了我们的ZIP框架。实验结果表明,与最新的后门防御基线相比,我们的拉链框架的优势。我们认为,我们的结果将为黑盒模型的未来防御方法提供宝贵的见解。我们的代码可在https://github.com/sycny/zip上找到。