仅供研究使用。不可用于诊断或治疗。本产品受条款和条件(包括有限许可,位于 www.biolegend.com/terms )(“条款”)的约束,并且只能按照条款中的规定使用。在不限制上述条款的情况下,未经 BioLegend 明确书面批准,不得将 BioLegend 产品用于条款中定义的任何商业用途、以任何形式转售、用于制造、逆向工程、测序或以其他方式研究或用于了解其设计或成分。无论本文档中提供的信息如何,用户均应全权负责确定用户预期用途所需的任何许可要求,并承担因使用产品而产生的所有风险和责任。BioLegend 对因使用其产品而导致的专利侵权或任何其他风险或责任概不负责。BioLegend、BioLegend 徽标和所有其他商标均为 BioLegend, Inc. 或其各自所有者的财产,保留所有权利。 8999 BioLegend Way,San Diego,CA 92121 www.biolegend.com 免费电话:1-877-Bio-Legend(246-5343) 电话:(858)768-5800 传真:(877)455-9587
描述 Pax6 是一种存在于胚胎发育过程中的转录因子。编码的蛋白质含有两个不同的结合位点,已知它们可以结合 DNA 并作为基因转录的调节器。它是眼睛和大脑发育的关键调节基因。在大脑中,该蛋白质参与处理嗅觉的专门细胞的发育。Pax-6 是眼睛和其他感觉器官、某些神经和表皮组织以及其他同源结构(通常源自外胚层组织)发育的关键基因。Pax6 充当成功进行分化和增殖所需的协调和模式形成的调节器,确保神经发生和眼发生过程成功进行。作为转录因子,Pax6 在分子水平上作用于中枢神经系统的信号传导和形成。Pax6 的特征配对 DNA 结合域利用两个 DNA 结合域,即配对域 (PD) 和配对型同源域 (HD)。这些域分别发挥作用。例如,HD 在整个眼球形成过程中对晶状体和视网膜的形成起着调控作用,而 PD 则在大脑发育过程中对神经发生模式的控制则由分子机制决定。HD 和 PD 结构域密切协调,使 Pax6 具有多功能性,可指导中枢神经系统形成过程中的分子信号传导。
仅供研究使用。不可用于诊断或治疗。本产品受条款和条件(包括有限许可,位于 www.biolegend.com/terms )(“条款”)的约束,并且只能按照条款中的规定使用。在不限制上述条款的情况下,未经 BioLegend 明确书面批准,不得将 BioLegend 产品用于条款中定义的任何商业用途、以任何形式转售、用于制造、逆向工程、测序或以其他方式研究或用于了解其设计或成分。无论本文档中提供的信息如何,用户均应全权负责确定用户预期用途所需的任何许可要求,并承担因使用产品而产生的所有风险和责任。BioLegend 对因使用其产品而导致的专利侵权或任何其他风险或责任概不负责。BioLegend、BioLegend 徽标和所有其他商标均为 BioLegend, Inc. 或其各自所有者的财产,保留所有权利。 8999 BioLegend Way,San Diego,CA 92121 www.biolegend.com 免费电话:1-877-Bio-Legend(246-5343) 电话:(858)768-5800 传真:(877)455-9587
仅供研究使用。不可用于诊断或治疗。本产品受条款和条件(包括有限许可,位于 www.biolegend.com/terms )(“条款”)的约束,并且只能按照条款中的规定使用。在不限制上述条款的情况下,未经 BioLegend 明确书面批准,不得将 BioLegend 产品用于条款中定义的任何商业用途、以任何形式转售、用于制造、逆向工程、测序或以其他方式研究或用于了解其设计或成分。无论本文档中提供的信息如何,用户均应全权负责确定用户预期用途所需的任何许可要求,并承担因使用产品而产生的所有风险和责任。BioLegend 对因使用其产品而导致的专利侵权或任何其他风险或责任概不负责。BioLegend、BioLegend 徽标和所有其他商标均为 BioLegend, Inc. 或其各自所有者的财产,保留所有权利。 8999 BioLegend Way,San Diego,CA 92121 www.biolegend.com 免费电话:1-877-Bio-Legend(246-5343) 电话:(858)768-5800 传真:(877)455-9587
• 当某人符合以下一项或多项标准时,建议进行两步 TST 检测: o 预计个人将定期接受重复 TST 筛查。这包括: 参与高危活动的医护人员: • 咳嗽诱导程序,如痰诱导。这不包括咽喉和/或鼻拭子 • 尸检 • 病态解剖和病理检查 • 支气管镜检查 • 指定的分枝杆菌学实验室程序,尤其是处理结核分枝杆菌培养物。 在接收活动性结核病患者的高危病房工作的医护人员。 • 高危病房是与感染预防与控制、工作场所健康与安全以及结核病服务部门合作确定的,基于加拿大结核病标准对医疗机构的风险分类。
提取方法在裂解后,将预填充的试剂墨盒加载在Magbinder®Fit24上,并选择了MB FIT24™CFDNA试剂盒的预加载提取脚本并在仪器上运行。所有样品均在Magbinder®拟合24仪器上运行,同时将磁杆一致工作,以在试剂盒的不同井中拾取,转移和释放磁性颗粒,以在末端在电流管中提供纯化的CFDNA。cfDNA在100 µl的体积中洗脱,使用Magbinder®拟合24的协议时间约为55分钟,从弹药放置到CFDNA洗脱。
图1。PSUPER-BRG1 siRNA表达质粒的序列分析。(a)大写字母指示DNA插入物的顺序,下部案例字母表示来自psuper载体的侧翼序列。打开箭头标记倒重复序列。一个BSMB I识别站点(盒装)将裂解在中间的“环”区域内用箭头指示的位置。填充箭头指示使用T7和T3引物进行测序反应的方向。(b)使用T7和T3-primers的未消除PSUPER-BRG1质粒的DNA测序色谱图。(c)用BSMB I消化后PSUPER-BRG1质粒的DNA测序色谱图(d)DNA二级结构预计会在siRNA编码区域内发生,这是由于倒置重复序列的序列互补性。测序反应过早终止的位置用开放箭头指示。实心箭头表示用BSMB I消化后的模板末端测序反应的径流终止。
摘要:酵母菌纯化的β-1,3/1,6-葡聚糖(BG)可以调节狗的免疫系统和mi-Crobiome,但最佳纳入剂量仍然未知。该研究的目的是评估在干挤出饮食中将BG纳入0.0、0.07、0.14和0.28%的影响,对健康成年犬的消化率,免疫力和粪便微生物群的影响。八个男性和女性边界罪共毛孔[n = 4;身体状况评分(BCS)= 5]和英语Cocker Spaniels(n = 4; BCS = 5),年龄3.5±0.5岁,随机分布在两个4×4平衡的拉丁正方形中。Fecal microbiota (using 16S rRNA sequencing, Illumina ® ), apparent digestibility coefficients (ADC) of nutrients, fecal concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA), ammoniacal nitrogen, lactic acid, IgA and pH, lymphocyte immunophenotyping, intensity确定吞噬作用和氧化爆发的百分比。在治疗之间没有观察到信仰(P = 0.1414)和Pielou-均匀度(p = 0.1151)的差异,但β多样性在0.0%和0.14%BG组之间差异(p = 0.047)。此外,Firmicutes门在所有组中都是最丰富的,并且在消耗0.14%BG后表现出最高的相对丰度,这一发现被认为对犬类微生物组有益。Erysipelotrichaceae和Ruminococcaceae家族以及粪便阶层和Prevotella属,被认为有利于其参与丁酸酯产量和其他代谢产物的有利,在消耗0.14%BG后的丰度增加了丰度。潜在的致病性蛋白杆菌状况显示出0.14%Bg后的丰度较低。繁殖化合物的粪便浓度和pH值在所有百分比的征服后没有差异。在0.14和0.28%BG消耗后发现了更高的粗蛋白ADC(P <0.0001),但对于其他营养素没有发现差异。吞噬作用,氧化爆发和淋巴细胞种群不受任何治疗的调节。但是,0.14%BG调节淋巴细胞T CD4 +:CD8 +比率(P = 0.0368),这是免疫系统效率的重要标志。纳入0.14%BG导致了最佳反应,并且是评估的最佳剂量。
在通常称为升华生长的物理气相传输 (PVT) 中,保持在特定温度下的源材料会升华,其蒸气通过扩散和对流传输到保持在较低温度下的籽晶,在那里可以结晶。碳化硅 (SiC)、氮化镓 (GaN)、氮化铝 (AlN)、氧化锌 (ZnO) 和其他材料作为下一代功率器件引起了人们的关注。这些单晶制造工艺涉及高温和恶劣环境,使用氨和氯化氢等腐蚀性气体。
摘要:CRISPR-Cas9技术的出现彻底改变了基础和转化生物医学研究。为了使Cas9核酸酶发挥基因组编辑活性,通常将源自猿猴病毒40(SV40)T抗原的核定位信号(NLS)作为基因融合体安装,以引导细胞内的Cas9蛋白进入细胞核。值得注意的是,先前的研究表明,多个SV40 NLS融合可以提高Cas9衍生的基因组编辑和碱基编辑工具的靶向活性。此外,多NLS融合可以以组成性表达和直接递送Cas9-引导RNA核糖核蛋白(RNP)复合物的形式增加Cas9的细胞内活性。然而,NLS融合与细胞内Cas9活性之间的关系尚不完全清楚,包括活性对NLS融合数量或组织的依赖性。在本研究中,我们构建并纯化了一组在蛋白质的 N 端或 C 端含有 1 至 4 个 NLS 重复序列的化脓性链球菌 Cas9 (SpCas9) 变体,并系统地分析了多 NLS 融合对 SpCas9 RNPs 活性的影响。我们发现,多 NLS 融合可以提高脂质转染或核转染 Cas9 RNPs 的细胞内活性。重要的是,多 NLS 融合可以增强 SpCas9 RNPs 在原代细胞、干细胞/祖细胞和小鼠胚胎中的基因组编辑活性。